mridulm commented on a change in pull request #30650:
URL: https://github.com/apache/spark/pull/30650#discussion_r548145864
##########
File path: core/src/main/scala/org/apache/spark/scheduler/TaskSetManager.scala
##########
@@ -439,77 +446,109 @@ private[spark] class TaskSetManager(
}
}
+ var dequeuedTaskIndex: Option[Int] = None
val taskDescription =
dequeueTask(execId, host, allowedLocality)
.map { case (index, taskLocality, speculative) =>
- // Found a task; do some bookkeeping and return a task description
- val task = tasks(index)
- val taskId = sched.newTaskId()
- // Do various bookkeeping
- copiesRunning(index) += 1
- val attemptNum = taskAttempts(index).size
- val info = new TaskInfo(taskId, index, attemptNum, curTime,
- execId, host, taskLocality, speculative)
- taskInfos(taskId) = info
- taskAttempts(index) = info :: taskAttempts(index)
- if (legacyLocalityWaitReset && maxLocality != TaskLocality.NO_PREF) {
- resetDelayScheduleTimer(Some(taskLocality))
- }
- // Serialize and return the task
- val serializedTask: ByteBuffer = try {
- ser.serialize(task)
- } catch {
- // If the task cannot be serialized, then there's no point to
re-attempt the task,
- // as it will always fail. So just abort the whole task-set.
- case NonFatal(e) =>
- val msg = s"Failed to serialize task $taskId, not attempting to
retry it."
- logError(msg, e)
- abort(s"$msg Exception during serialization: $e")
- throw new TaskNotSerializableException(e)
- }
- if (serializedTask.limit() > TaskSetManager.TASK_SIZE_TO_WARN_KIB *
1024 &&
- !emittedTaskSizeWarning) {
- emittedTaskSizeWarning = true
- logWarning(s"Stage ${task.stageId} contains a task of very large
size " +
- s"(${serializedTask.limit() / 1024} KiB). The maximum recommended
task size is " +
- s"${TaskSetManager.TASK_SIZE_TO_WARN_KIB} KiB.")
- }
- addRunningTask(taskId)
-
- // We used to log the time it takes to serialize the task, but task
size is already
- // a good proxy to task serialization time.
- // val timeTaken = clock.getTime() - startTime
- val tName = taskName(taskId)
- logInfo(s"Starting $tName ($host, executor ${info.executorId}, " +
- s"partition ${task.partitionId}, $taskLocality,
${serializedTask.limit()} bytes) " +
- s"taskResourceAssignments ${taskResourceAssignments}")
-
- sched.dagScheduler.taskStarted(task, info)
- new TaskDescription(
- taskId,
- attemptNum,
- execId,
- tName,
- index,
- task.partitionId,
- addedFiles,
- addedJars,
- addedArchives,
- task.localProperties,
- taskResourceAssignments,
- serializedTask)
- }
+ dequeuedTaskIndex = Some(index)
+ if (legacyLocalityWaitReset && maxLocality !=
TaskLocality.NO_PREF) {
+ resetDelayScheduleTimer(Some(taskLocality))
Review comment:
Do this for barrier tasks only if schedule goes through ?
##########
File path:
core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala
##########
@@ -661,35 +667,51 @@ private[spark] class TaskSchedulerImpl(
}
if (launchedAnyTask && taskSet.isBarrier) {
+ val barrierPendingLaunchTasks =
taskSet.barrierPendingLaunchTasks.values.toArray
// Check whether the barrier tasks are partially launched.
- // TODO SPARK-24818 handle the assert failure case (that can happen
when some locality
- // requirements are not fulfilled, and we should revert the launched
tasks).
- if (addressesWithDescs.size != taskSet.numTasks) {
- val errorMsg =
- s"Fail resource offers for barrier stage ${taskSet.stageId}
because only " +
- s"${addressesWithDescs.size} out of a total number of
${taskSet.numTasks}" +
- s" tasks got resource offers. This happens because barrier
execution currently " +
- s"does not work gracefully with delay scheduling. We highly
recommend you to " +
- s"disable delay scheduling by setting spark.locality.wait=0 as
a workaround if " +
- s"you see this error frequently."
- logWarning(errorMsg)
- taskSet.abort(errorMsg)
- throw new SparkException(errorMsg)
- }
+ if (barrierPendingLaunchTasks.size != taskSet.numTasks) {
+ barrierPendingLaunchTasks.foreach { task =>
Review comment:
nit: `barrierPendingLaunchTasks.reverse`
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]