zhongyu09 commented on a change in pull request #31167:
URL: https://github.com/apache/spark/pull/31167#discussion_r558350221
##########
File path:
sql/core/src/main/scala/org/apache/spark/sql/execution/adaptive/AdaptiveSparkPlanExec.scala
##########
@@ -190,7 +191,36 @@ case class AdaptiveSparkPlanExec(
executionId.foreach(onUpdatePlan(_, result.newStages.map(_.plan)))
// Start materialization of all new stages and fail fast if any
stages failed eagerly
- result.newStages.foreach { stage =>
+
+ // SPARK-33933: we should materialize broadcast stages first and
wait the
+ // materialization finish before materialize other stages, to avoid
waiting
+ // for broadcast tasks to be scheduled and leading to broadcast
timeout.
+ val broadcastMaterializationFutures = result.newStages
+ .filter(_.isInstanceOf[BroadcastQueryStageExec])
+ .map { stage =>
+ var future: Future[Any] = null
+ try {
+ future = stage.materialize()
+ future.onComplete { res =>
+ if (res.isSuccess) {
+ events.offer(StageSuccess(stage, res.get))
+ } else {
+ events.offer(StageFailure(stage, res.failed.get))
+ }
+ }(AdaptiveSparkPlanExec.executionContext)
+ } catch {
+ case e: Throwable =>
+ cleanUpAndThrowException(Seq(e), Some(stage.id))
+ }
+ future
+ }
+
+ // Wait for the materialization of all broadcast stages finish
+ broadcastMaterializationFutures.foreach(ThreadUtils.awaitReady(_,
Duration.Inf))
Review comment:
But the original solution cannot guarantee the stage submission order.
The UT may be flaky. I have tried to retry the test when fail, and it's always
fail after retry.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]