HyukjinKwon commented on a change in pull request #31207:
URL: https://github.com/apache/spark/pull/31207#discussion_r567530903



##########
File path: python/pyspark/sql/functions.py
##########
@@ -91,13 +92,58 @@ def lit(col):
     Creates a :class:`Column` of literal value.
 
     .. versionadded:: 1.3.0
+    .. versionchanged:: 3.2.0
+        Added support for complex type literals.
+
+    Parameters
+    ----------
+    col : bool, float, int, str, datetime.date, datetime.datetime, dict, list, 
tuple
+        Object to be converted into :class:`Column`.
+
+        If it is a collection, conversion will be applied recursively. In such 
case,
+        all stored values should be of compatible types.
+
+        The passed in object is returned directly if it is already a 
:class:`Column`.
 
     Examples
     --------
     >>> df.select(lit(5).alias('height')).withColumn('spark_user', 
lit(True)).take(1)
     [Row(height=5, spark_user=True)]
-    """
-    return col if isinstance(col, Column) else _invoke_function("lit", col)
+    >>> df.select(
+    ...     lit({"height": 5}).alias("data"),
+    ...     lit(["python", "scala"]).alias("languages")
+    ... ).take(1)
+    [Row(data={'height': 5}, languages=['python', 'scala'])]
+    """
+    if isinstance(col, Column):
+        return col
+
+    elif isinstance(col, list):
+        return array(*[lit(x) for x in col])

Review comment:
       One thing I am a bit worried is that this will lazily check the type 
(with type coercion) unlike Scala side ...




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to