Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/5596#discussion_r29059360
--- Diff: mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala
---
@@ -0,0 +1,190 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.feature
+
+import org.apache.spark.annotation.AlphaComponent
+import org.apache.spark.ml.param._
+import org.apache.spark.ml.param.shared._
+import org.apache.spark.ml.util.SchemaUtils
+import org.apache.spark.ml.{Estimator, Model}
+import org.apache.spark.mllib.feature
+import org.apache.spark.mllib.linalg.{VectorUDT, Vectors}
+import org.apache.spark.sql.functions._
+import org.apache.spark.sql.types._
+import org.apache.spark.sql.{DataFrame, Row}
+
+/**
+ * Params for [[Word2Vec]] and [[Word2VecModel]].
+ */
+private[feature] trait Word2VecBase extends Params
+ with HasInputCol with HasOutputCol with HasMaxIter with HasStepSize {
+
+ /**
+ * The dimension of the code that you want to transform from words.
+ */
+ final val vectorSize = new IntParam(
+ this, "vectorSize", "the dimension of codes after transforming from
words")
+
+ setDefault(vectorSize -> 100)
+
+ /** @group getParam */
+ def getVectorSize: Int = getOrDefault(vectorSize)
+
+ /**
+ * Number of partitions for sentences of words.
+ */
+ final val numPartitions = new IntParam(
+ this, "numPartitions", "number of partitions for sentences of words")
+
+ setDefault(numPartitions -> 1)
+
+ /** @group getParam */
+ def getNumPartitions: Int = getOrDefault(numPartitions)
+
+ /**
+ * A random seed to random an initial vector.
+ */
+ final val seed = new LongParam(this, "seed", "a random seed to random an
initial vector")
+
+ setDefault(seed -> 42L)
+
+ /** @group getParam */
+ def getSeed: Long = getOrDefault(seed)
+
+ /**
+ * The minimum number of times a token must appear to be included in the
word2vec model's
+ * vocabulary.
+ */
+ final val minCount = new IntParam(this, "minCount", "the minimum number
of times a token must " +
+ "appear to be included in the word2vec model's vocabulary")
+
+ setDefault(minCount -> 5)
+
+ /** @group getParam */
+ def getMinCount: Int = getOrDefault(minCount)
+
+ setDefault(stepSize -> 0.025)
+ setDefault(maxIter -> 1)
+
+ /**
+ * Validate and transform the input schema.
+ */
+ protected def validateAndTransformSchema(schema: StructType, paramMap:
ParamMap): StructType = {
+ val map = extractParamMap(paramMap)
+ SchemaUtils.checkColumnType(schema, map(inputCol), new
ArrayType(StringType, true))
+ SchemaUtils.appendColumn(schema, map(outputCol), new VectorUDT)
+ }
+}
+
+/**
+ * :: AlphaComponent ::
+ * Word2Vec trains a model of `Map(String, Vector)`, i.e. transforms a
word into a code for further
+ * natural language processing or machine learning process.
+ */
+@AlphaComponent
+final class Word2Vec extends Estimator[Word2VecModel] with Word2VecBase {
+
+ /** @group setParam */
+ def setInputCol(value: String): this.type = set(inputCol, value)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ /** @group setParam */
+ def setVectorSize(value: Int): this.type = set(vectorSize, value)
+
+ /** @group setParam */
+ def setStepSize(value: Double): this.type = set(stepSize, value)
+
+ /** @group setParam */
+ def setNumPartitions(value: Int): this.type = set(numPartitions, value)
+
+ /** @group setParam */
+ def setMaxIter(value: Int): this.type = set(maxIter, value)
+
+ /** @group setParam */
+ def setSeed(value: Long): this.type = set(seed, value)
+
+ /** @group setParam */
+ def setMinCount(value: Int): this.type = set(minCount, value)
+
+ override def fit(dataset: DataFrame, paramMap: ParamMap): Word2VecModel
= {
+ transformSchema(dataset.schema, paramMap, logging = true)
+ val map = extractParamMap(paramMap)
+ val input = dataset.select(map(inputCol)).map { case Row(v:
Seq[String]) => v }
+ val wordVectors = new feature.Word2Vec()
+ .setLearningRate(map(stepSize))
+ .setMinCount(map(minCount))
+ .setNumIterations(map(maxIter))
+ .setNumPartitions(map(numPartitions))
+ .setSeed(map(seed))
+ .setVectorSize(map(vectorSize))
+ .fit(input)
+ val model = new Word2VecModel(this, map, wordVectors)
+ Params.inheritValues(map, this, model)
+ model
+ }
+
+ override def transformSchema(schema: StructType, paramMap: ParamMap):
StructType = {
+ validateAndTransformSchema(schema, paramMap)
+ }
+}
+
+/**
+ * :: AlphaComponent ::
+ * Model fitted by [[Word2Vec]].
+ */
+@AlphaComponent
+class Word2VecModel private[ml] (
+ override val parent: Word2Vec,
+ override val fittingParamMap: ParamMap,
+ wordVectors: feature.Word2VecModel)
+ extends Model[Word2VecModel] with Word2VecBase {
+
+ /** @group setParam */
+ def setInputCol(value: String): this.type = set(inputCol, value)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ /**
+ * Transform a sentence column to a vector column to represent the whole
sentence. The transform
+ * is performed by averaging all word vectors it contains.
+ */
+ override def transform(dataset: DataFrame, paramMap: ParamMap):
DataFrame = {
+ transformSchema(dataset.schema, paramMap, logging = true)
+ val map = extractParamMap(paramMap)
+ val bWordVectors =
dataset.sqlContext.sparkContext.broadcast(wordVectors)
+ val word2Vec = udf { v: Seq[String] =>
+ if (v.size == 0) {
+ Vectors.zeros(map(vectorSize))
--- End diff --
Output sparse vector.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]