harupy commented on a change in pull request #32245:
URL: https://github.com/apache/spark/pull/32245#discussion_r616310831



##########
File path: python/pyspark/ml/classification.py
##########
@@ -3151,7 +3151,7 @@ def func(predictions):
                     predArray.append(x)
                 return Vectors.dense(predArray)
 
-            rawPredictionUDF = udf(func)
+            rawPredictionUDF = udf(func, VectorUDT())
             aggregatedDataset = aggregatedDataset.withColumn(
                 self.getRawPredictionCol(), 
rawPredictionUDF(aggregatedDataset[accColName]))

Review comment:
       Can we just cast the `accColName` column to `VectorUDT` here instead of 
using `udf`?
   
   ```suggestion
               aggregatedDataset = aggregatedDataset.withColumn(
                   self.getRawPredictionCol(), 
aggregatedDataset[accColName].cast(VectorUDT()))
   ```

##########
File path: python/pyspark/ml/classification.py
##########
@@ -3151,7 +3151,7 @@ def func(predictions):
                     predArray.append(x)
                 return Vectors.dense(predArray)
 
-            rawPredictionUDF = udf(func)
+            rawPredictionUDF = udf(func, VectorUDT())
             aggregatedDataset = aggregatedDataset.withColumn(
                 self.getRawPredictionCol(), 
rawPredictionUDF(aggregatedDataset[accColName]))

Review comment:
       Can we just cast the `accColName` column to `VectorUDT` here?
   
   ```suggestion
               aggregatedDataset = aggregatedDataset.withColumn(
                   self.getRawPredictionCol(), 
aggregatedDataset[accColName].cast(VectorUDT()))
   ```




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to