tverdokhlebd opened a new pull request #32297:
URL: https://github.com/apache/spark/pull/32297


   Hi. I am trying to migrate from spark 2.4.5 to 3.1.1 and there is a problem 
in graceful shutdown.
   
   Config parameter "spark.streaming.stopGracefullyOnShutdown" is set as "true".
   
   Here is the code:
   
   ```
   inputStream.foreachRDD {
     rdd =>
       rdd.foreachPartition {
           Thread.sleep(5000)
       }
   }
   ```
   
   I send a SIGTERM signal to stop the spark streaming and after sleeping an 
exception arises:
   
   ```
   streaming-agg-tds-data_1  | java.util.concurrent.RejectedExecutionException: 
Task org.apache.spark.executor.Executor$TaskRunner@7ca7f0b8 rejected from 
java.util.concurrent.ThreadPoolExecutor@2474219c[Terminated, pool size = 0, 
active threads = 0, queued tasks = 0, completed tasks = 1]
   streaming-agg-tds-data_1  |     at 
java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2063)
   streaming-agg-tds-data_1  |     at 
java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830)
   streaming-agg-tds-data_1  |     at 
java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.executor.Executor.launchTask(Executor.scala:270)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.scheduler.local.LocalEndpoint.$anonfun$reviveOffers$1(LocalSchedulerBackend.scala:93)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.scheduler.local.LocalEndpoint.$anonfun$reviveOffers$1$adapted(LocalSchedulerBackend.scala:91)
   streaming-agg-tds-data_1  |     at 
scala.collection.Iterator.foreach(Iterator.scala:941)
   streaming-agg-tds-data_1  |     at 
scala.collection.Iterator.foreach$(Iterator.scala:941)
   streaming-agg-tds-data_1  |     at 
scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
   streaming-agg-tds-data_1  |     at 
scala.collection.IterableLike.foreach(IterableLike.scala:74)
   streaming-agg-tds-data_1  |     at 
scala.collection.IterableLike.foreach$(IterableLike.scala:73)
   streaming-agg-tds-data_1  |     at 
scala.collection.AbstractIterable.foreach(Iterable.scala:56)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.scheduler.local.LocalEndpoint.reviveOffers(LocalSchedulerBackend.scala:91)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.scheduler.local.LocalEndpoint$$anonfun$receive$1.applyOrElse(LocalSchedulerBackend.scala:68)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:115)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:213)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.rpc.netty.MessageLoop.org$apache$spark$rpc$netty$MessageLoop$$receiveLoop(MessageLoop.scala:75)
   streaming-agg-tds-data_1  |     at 
org.apache.spark.rpc.netty.MessageLoop$$anon$1.run(MessageLoop.scala:41)
   streaming-agg-tds-data_1  |     at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
   streaming-agg-tds-data_1  |     at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
   streaming-agg-tds-data_1  |     at java.lang.Thread.run(Thread.java:748)
   streaming-agg-tds-data_1  | 2021-04-22 13:33:41 WARN  JobGenerator - Timed 
out while stopping the job generator (timeout = 10000)
   streaming-agg-tds-data_1  | 2021-04-22 13:33:41 INFO  JobGenerator - Waited 
for jobs to be processed and checkpoints to be written
   streaming-agg-tds-data_1  | 2021-04-22 13:33:41 INFO  JobGenerator - Stopped 
JobGenerator
   ```
   
   After this exception and "JobGenerator - Stopped JobGenerator" log, 
streaming freezes, and halts by timeout (Config parameter 
"hadoop.service.shutdown.timeout").
   
   Besides, there is no problem with the graceful shutdown in spark 2.4.5.


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to