HyukjinKwon commented on a change in pull request #32835:
URL: https://github.com/apache/spark/pull/32835#discussion_r648802230



##########
File path: python/docs/source/user_guide/pandas_on_spark/types.rst
##########
@@ -204,21 +204,21 @@ You can also check the underlying PySpark data type of 
`Series` or schema of `Da
     >>> ks.Series([0.3, 0.1, 0.8]).spark.data_type
     DoubleType
 
-    >>> ks.Series(["welcome", "to", "Koalas"]).spark.data_type
+    >>> ks.Series(["welcome", "to", "pandas APIs on Spark"]).spark.data_type
     StringType
 
     >>> ks.Series([[False, True, False]]).spark.data_type
     ArrayType(BooleanType,true)
 
-    >>> ks.DataFrame({"d": [0.3, 0.1, 0.8], "s": ["welcome", "to", "Koalas"], 
"b": [False, True, False]}).spark.print_schema()
+    >>> ks.DataFrame({"d": [0.3, 0.1, 0.8], "s": ["welcome", "to", "pandas 
APIs on Spark"], "b": [False, True, False]}).spark.print_schema()

Review comment:
       ```suggestion
       >>> ks.DataFrame({"d": [0.3, 0.1, 0.8], "s": ["welcome", "to", 
"pandas-on-Spark"], "b": [False, True, False]}).spark.print_schema()
   ```

##########
File path: python/docs/source/user_guide/pandas_on_spark/types.rst
##########
@@ -204,21 +204,21 @@ You can also check the underlying PySpark data type of 
`Series` or schema of `Da
     >>> ks.Series([0.3, 0.1, 0.8]).spark.data_type
     DoubleType
 
-    >>> ks.Series(["welcome", "to", "Koalas"]).spark.data_type
+    >>> ks.Series(["welcome", "to", "pandas APIs on Spark"]).spark.data_type
     StringType
 
     >>> ks.Series([[False, True, False]]).spark.data_type
     ArrayType(BooleanType,true)
 
-    >>> ks.DataFrame({"d": [0.3, 0.1, 0.8], "s": ["welcome", "to", "Koalas"], 
"b": [False, True, False]}).spark.print_schema()
+    >>> ks.DataFrame({"d": [0.3, 0.1, 0.8], "s": ["welcome", "to", "pandas 
APIs on Spark"], "b": [False, True, False]}).spark.print_schema()
     root
      |-- d: double (nullable = false)
      |-- s: string (nullable = false)
      |-- b: boolean (nullable = false)
 
 .. note::
 
-    Koalas currently does not support multiple types of data in single column.
+    Pandas APIs on Spark currently does not support multiple types of data in 
single column.

Review comment:
       ```suggestion
       Pandas APIs on Spark currently do not support multiple types of data in 
single column.
   ```




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to