HyukjinKwon commented on a change in pull request #32955:
URL: https://github.com/apache/spark/pull/32955#discussion_r655853638



##########
File path: python/pyspark/pandas/spark/functions.py
##########
@@ -32,6 +41,22 @@ def repeat(col: Column, n: Union[int, Column]) -> Column:
     return _call_udf(sc, "repeat", _to_java_column(col), n)
 
 
+def lit(literal: Any) -> Column:
+    """
+    Creates a Column of literal value.
+    """
+    if isinstance(literal, np.int64):

Review comment:
       @xinrong-databricks, I think we can just support this natively all 
across PySpark. Can you add an input converter here 
(https://github.com/apache/spark/blob/20750a3f9e13a2f02860859f87bbc38a18cba85e/python/pyspark/sql/types.py#L1608-L1622)
 and see if it works?
   
   Also, I think we can simplify it by `item()` 
(https://stackoverflow.com/a/11389998/2438480) with  `np.generic` type check 
(https://numpy.org/doc/stable/reference/arrays.scalars.html).
   
   cc @ueshin @itholic too

##########
File path: python/pyspark/pandas/spark/functions.py
##########
@@ -32,6 +41,22 @@ def repeat(col: Column, n: Union[int, Column]) -> Column:
     return _call_udf(sc, "repeat", _to_java_column(col), n)
 
 
+def lit(literal: Any) -> Column:
+    """
+    Creates a Column of literal value.
+    """
+    if isinstance(literal, np.int64):

Review comment:
       cc @mengxr too FYI




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to