cloud-fan commented on a change in pull request #32049:
URL: https://github.com/apache/spark/pull/32049#discussion_r667094586
##########
File path:
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/V2ScanRelationPushDown.scala
##########
@@ -17,61 +17,179 @@
package org.apache.spark.sql.execution.datasources.v2
-import org.apache.spark.sql.catalyst.expressions.{And, Expression,
NamedExpression, ProjectionOverSchema, SubqueryExpression}
-import org.apache.spark.sql.catalyst.planning.ScanOperation
-import org.apache.spark.sql.catalyst.plans.logical.{Filter, LogicalPlan,
Project}
+import org.apache.spark.sql.catalyst.expressions._
+import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
+import org.apache.spark.sql.catalyst.planning.{OperationHelper, ScanOperation}
+import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, Filter,
LeafNode, LogicalPlan, Project}
import org.apache.spark.sql.catalyst.rules.Rule
-import org.apache.spark.sql.connector.read.{Scan, V1Scan}
+import org.apache.spark.sql.catalyst.util.toPrettySQL
+import org.apache.spark.sql.connector.expressions.Aggregation
+import org.apache.spark.sql.connector.read.{Scan, ScanBuilder,
SupportsPushDownAggregates, SupportsPushDownFilters, V1Scan}
import org.apache.spark.sql.execution.datasources.DataSourceStrategy
import org.apache.spark.sql.sources
import org.apache.spark.sql.types.StructType
-object V2ScanRelationPushDown extends Rule[LogicalPlan] {
+object V2ScanRelationPushDown extends Rule[LogicalPlan] with AliasHelper
+ with OperationHelper with PredicateHelper {
import DataSourceV2Implicits._
- override def apply(plan: LogicalPlan): LogicalPlan = plan transformDown {
- case ScanOperation(project, filters, relation: DataSourceV2Relation) =>
- val scanBuilder =
relation.table.asReadable.newScanBuilder(relation.options)
+ def apply(plan: LogicalPlan): LogicalPlan = {
+
applyColumnPruning(pushdownAggregate(pushDownFilters(createScanBuilder(plan))))
+ }
+
+ private def createScanBuilder(plan: LogicalPlan) = plan.transform {
+ case r: DataSourceV2Relation =>
+ ScanBuilderHolder(r.output, r,
r.table.asReadable.newScanBuilder(r.options))
+ }
- val normalizedFilters = DataSourceStrategy.normalizeExprs(filters,
relation.output)
+ private def pushDownFilters(plan: LogicalPlan) = plan.transform {
+ // update the scan builder with filter push down and return a new plan
with filter pushed
+ case filter @ Filter(_, sHolder: ScanBuilderHolder) =>
+ val (filters, _, _) = collectFilters(filter).get
+
+ val normalizedFilters =
+ DataSourceStrategy.normalizeExprs(filters, sHolder.relation.output)
val (normalizedFiltersWithSubquery, normalizedFiltersWithoutSubquery) =
normalizedFilters.partition(SubqueryExpression.hasSubquery)
// `pushedFilters` will be pushed down and evaluated in the underlying
data sources.
// `postScanFilters` need to be evaluated after the scan.
// `postScanFilters` and `pushedFilters` can overlap, e.g. the parquet
row group filter.
val (pushedFilters, postScanFiltersWithoutSubquery) =
PushDownUtils.pushFilters(
- scanBuilder, normalizedFiltersWithoutSubquery)
+ sHolder.builder, normalizedFiltersWithoutSubquery)
val postScanFilters = postScanFiltersWithoutSubquery ++
normalizedFiltersWithSubquery
+ logInfo(
+ s"""
+ |Pushing operators to ${sHolder.relation.name}
+ |Pushed Filters: ${pushedFilters.mkString(", ")}
+ |Post-Scan Filters: ${postScanFilters.mkString(",")}
+ """.stripMargin)
+
+ val filterCondition = postScanFilters.reduceLeftOption(And)
+ filterCondition.map(Filter(_, sHolder)).getOrElse(sHolder)
+ }
+
+ def pushdownAggregate(plan: LogicalPlan): LogicalPlan = plan.transform {
+ // update the scan builder with agg pushdown and return a new plan with
agg pushed
+ case aggNode@Aggregate(groupingExpressions, resultExpressions, child) =>
+ child match {
+ case ScanOperation(project, filters, sHolder: ScanBuilderHolder) =>
Review comment:
I think we can only support aggregate pushdown if
`project.forall(_.isInstanceOf[AttributeReference])`, otherwise we need to push
down the aggregate through project first, then push down aggregate to the data
source, which can be more complicated and the code below doesn't seem to handle
it well.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]