Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/5830#discussion_r29702850
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/reduction/Multiclass2Binary.scala ---
@@ -0,0 +1,209 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.reduction
+
+import scala.language.existentials
+
+import org.apache.spark.annotation.{AlphaComponent, DeveloperApi}
+import org.apache.spark.ml.{Estimator, Model}
+import org.apache.spark.ml.classification.{ClassificationModel,
Classifier, ClassifierParams}
+import org.apache.spark.ml.param.{IntParam, Param, ParamMap}
+import org.apache.spark.ml.util.SchemaUtils
+import org.apache.spark.mllib.linalg._
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.{DataFrame, Row}
+import org.apache.spark.sql.functions._
+import org.apache.spark.sql.types._
+import org.apache.spark.storage.StorageLevel
+
+/**
+ * Params for [[Multiclass2Binary]].
+ */
+private[ml] trait Multiclass2BinaryParams extends ClassifierParams {
+
+ type ClassifierType = Classifier[F, E, M] forSome {
+ type F ;
+ type M <: ClassificationModel[F,M];
+ type E <: Classifier[F, E,M]
+ }
+
+ /**
+ * param for prediction column name
+ * @group param
+ */
+ val idCol: Param[String] =
+ new Param(this, "idCol", "id column name")
+
+ setDefault(idCol, "id")
+
+ /**
+ * param for base classifier index column name
+ * @group param
+ */
+ val indexCol: Param[String] =
+ new Param(this, "indexCol", "classifier index column name")
+
+ setDefault(indexCol, "index")
+
+ /**
+ * param for the base classifier that we reduce multiclass
classification into.
+ * @group param
+ */
+ val baseClassifier: Param[ClassifierType] =
+ new Param(this, "baseClassifier", "base binary classifier/regressor ")
+
+ /** @group getParam */
+ def getBaseClassifier: ClassifierType = getOrDefault(baseClassifier)
+
+ /**
+ * param for number of classes.
+ * @group param
+ */
+ val k: IntParam = new IntParam(this, "k", "number of classes")
+
+ /** @group getParam */
+ def getK(): Int = getOrDefault(k)
+
+}
+
+/**
+ *
+ * @param parent
+ * @param baseClassificationModels the binary classification models for
reduction.
+ */
+@AlphaComponent
+private[ml] class Multiclass2BinaryModel(
+ override val parent: Multiclass2Binary,
+ val baseClassificationModels: Seq[Model[_]])
+ extends Model[Multiclass2BinaryModel] with Multiclass2BinaryParams {
+
+ /**
+ * Transforms the dataset with provided parameter map as additional
parameters.
+ * @param dataset input dataset
+ * @return transformed dataset
+ */
+ override def transform(dataset: DataFrame): DataFrame = {
+ // Check schema
+ val parentSchema = dataset.schema
+ transformSchema(parentSchema, logging = true)
+ val sqlCtx = dataset.sqlContext
+
+ // score each model on every data point and pick the model with
highest score
+ // TODO: Add randomization when there are ties.
+ val predictions = baseClassificationModels.zipWithIndex.par.map { case
(model, index) =>
+ val output = model.transform(dataset)
+ output.select($(rawPredictionCol)).map { case Row(p: Vector) =>
List((index, p(1))) }
+ }.reduce[RDD[List[(Int, Double)]]] { case (x, y) =>
+ x.zip(y).map { case ((a, b)) =>
+ a ++ b
+ }
+ }.
+ map(_.maxBy(_._2))
+
+ // ensure that we pass through columns that are part of the original
dataset.
+ val results = dataset.select(col("*")).rdd.zip(predictions).map { case
((row, (label, _))) =>
+ Row.fromSeq(row.toSeq ++ List(label.toDouble))
+ }
+
+ // the output schema should retain all input fields and add prediction
column.
+ val outputSchema = SchemaUtils.appendColumn(parentSchema,
$(predictionCol), DoubleType)
+ sqlCtx.createDataFrame(results, outputSchema)
+ }
+
+ @DeveloperApi
+ protected def featuresDataType: DataType = new VectorUDT
+
+ override def transformSchema(schema: StructType): StructType = {
+ validateAndTransformSchema(schema, fitting = false, featuresDataType)
+ }
+
+}
+
+/**
+ * :: Experimental ::
+ *
+ * Reduction of Multiclass Classification to Binary Classification.
+ * Performs reduction using one against all strategy.
+ * For a multiclass classification with k classes, train k models (one per
class).
+ * Each example is scored against all k models and the model with highest
score
+ * is picked to label the example.
+ *
+ */
+class Multiclass2Binary extends Estimator[Multiclass2BinaryModel]
+ with Multiclass2BinaryParams {
+
+ @DeveloperApi
+ protected def featuresDataType: DataType = new VectorUDT
+
+ /** @group setParam */
+ def setBaseClassifier(value: ClassifierType): this.type =
set(baseClassifier, value)
+
+ /** @group setParam */
+ def setNumClasses(value: Int): this.type = set(k, value)
+
+ override def fit(dataset: DataFrame): Multiclass2BinaryModel = {
+
+ val numClasses = $(k)
+ val multiclassLabeled = dataset.select($(labelCol), $(featuresCol))
+
+ // persist if underlying dataset is not persistent
+ val handlePersistence = dataset.rdd.getStorageLevel ==
StorageLevel.NONE
+ if (handlePersistence) {
+ multiclassLabeled.persist(StorageLevel.MEMORY_AND_DISK)
+ }
+
+ // create k columns, one for each binary classifier.
+ val models = Range(0, numClasses).par.map { index =>
+ val labelColName = "mc2b$" + index
+ val label: Double => Double = (label: Double) => {
+ if (label.toInt == index) 1.0 else 0.0
+ }
+ val labelUDF = callUDF(label, DoubleType, col($(labelCol)))
+ val trainingDataset = multiclassLabeled.withColumn(labelColName,
labelUDF)
+ val classifier = newClassifier(extractParamMap(), labelColName)
+ classifier.fit(trainingDataset)
--- End diff --
`classifier.fit(trainingDataset, classifer.labelCol -> labelColName)`
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]