HyukjinKwon commented on a change in pull request #33882:
URL: https://github.com/apache/spark/pull/33882#discussion_r699819031



##########
File path: python/pyspark/pandas/namespace.py
##########
@@ -2814,9 +2824,18 @@ def to_numeric(arg):
     1.0
     """
     if isinstance(arg, Series):
-        return arg._with_new_scol(arg.spark.column.cast("float"))
+        if errors == "coerce":
+            return arg._with_new_scol(arg.spark.column.cast("int"))
+        elif errors == "ignore":
+            scol = arg.spark.column
+            casted_scol = scol.cast("int")
+            return arg._with_new_scol(F.when(casted_scol.isNull(), 
scol).otherwise(casted_scol))

Review comment:
       If `scol` is a string column, the output type can be a string column:
   
   ```python
   >>> from pyspark.sql import functions as F
   >>> scol = F.col("a")
   >>> casted_scol = scol.cast("int")
   >>> df = sql("SELECT 'a' as a")
   >>> df.select(F.when(casted_scol.isNull(), 
scol).otherwise(casted_scol)).printSchema()
   root
    |-- CASE WHEN (CAST(a AS INT) IS NULL) THEN a ELSE CAST(a AS INT) END: 
string (nullable = true)
   ```
   
   is this correct type?




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to