Ngone51 commented on a change in pull request #33872:
URL: https://github.com/apache/spark/pull/33872#discussion_r700126164



##########
File path: 
core/src/test/scala/org/apache/spark/scheduler/TaskSchedulerImplSuite.scala
##########
@@ -1995,6 +2000,61 @@ class TaskSchedulerImplSuite extends SparkFunSuite with 
LocalSparkContext with B
     assert(!normalTSM.runningTasksSet.contains(taskId))
   }
 
+  test("SPARK-36575: Executor lost cause task hang") {
+    val taskScheduler = setupScheduler()
+
+    val resultGetter = new TaskResultGetter(sc.env, taskScheduler) {
+      override protected val getTaskResultExecutor: ExecutorService =
+        ThreadUtils.newDaemonFixedThreadPool(1, "task-result-getter")
+      def taskResultExecutor() : ExecutorService = getTaskResultExecutor
+    }
+    taskScheduler.taskResultGetter = resultGetter
+
+    val workerOffers = IndexedSeq(new WorkerOffer("executor0", "host0", 1),
+      new WorkerOffer("executor1", "host1", 1))
+    val task1 = new ShuffleMapTask(1, 0, null, new Partition {
+      override def index: Int = 0
+    }, Seq(TaskLocation("host0", "executor0")), new Properties, null)
+
+    val task2 = new ShuffleMapTask(1, 0, null, new Partition {
+      override def index: Int = 0
+    }, Seq(TaskLocation("host1", "executor1")), new Properties, null)
+
+    val taskSet = new TaskSet(Array(task1, task2), 0, 0, 0, null, 0)
+
+    taskScheduler.submitTasks(taskSet)
+    val taskDescriptions = taskScheduler.resourceOffers(workerOffers).flatten
+    assert(2 === taskDescriptions.length)
+
+    val ser = sc.env.serializer.newInstance()
+    val directResult = new DirectTaskResult[Int](ser.serialize(1), Seq(), 
Array.empty)
+    val resultBytes = ser.serialize(directResult)
+
+    // make getTaskResultExecutor busy
+    import scala.language.reflectiveCalls
+    resultGetter.taskResultExecutor().submit( new Runnable {
+      override def run(): Unit = Thread.sleep(100)
+    })
+
+    // task1 finished
+    taskScheduler.statusUpdate(
+      tid = taskDescriptions(0).taskId,
+      state = TaskState.FINISHED,
+      serializedData = resultBytes
+    )
+
+    // mark executor heartbeat timed out
+    taskScheduler.executorLost(taskDescriptions(0).executorId, 
ExecutorProcessLost("Executor " +
+      "heartbeat timed out"))
+
+    // Wait a while until all events are processed
+    Thread.sleep(100)

Review comment:
       > The issue will cause TaskSetManager.successful wrong result, mark the 
partition index true. And TaskSetManager.dequeueTaskFromList only dequeue the 
unsuccessful index 
(https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/scheduler/TaskSetManager.scala#L313),
 so this partition index will be never scheduled again.
   
   
   As I mentioned, the stage can also complete even if the pending list isn't 
empty. The TaskSetManager can still complete as long as `tasksSuccessful == 
numTasks`. I still can't get why it can lead to stage hang.
   
   




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to