pralabhkumar commented on a change in pull request #34401:
URL: https://github.com/apache/spark/pull/34401#discussion_r738109398
##########
File path: python/pyspark/sql/pandas/conversion.py
##########
@@ -151,7 +151,17 @@ def toPandas(self) -> "PandasDataFrameLike":
_convert_map_items_to_dict(pdf[field.name])
return pdf
else:
- return pd.DataFrame.from_records([],
columns=self.columns)
+ pdf = pd.DataFrame.from_records([],
columns=self.columns)
+ df = pd.DataFrame()
+ for fieldIdx, field in enumerate(self.schema):
+ pandas_type = \
+
PandasConversionMixin._to_corrected_pandas_type(field.dataType)
+ column_name = self.schema[fieldIdx].name
+ series = pdf.iloc[:, fieldIdx]
+ if pandas_type is not None:
+ series = series.astype(pandas_type, copy=False)
+ df.insert(fieldIdx, column_name, series,
allow_duplicates=True)
Review comment:
@HyukjinKwon Thx for the comment . There is simple way to assign types
to an empty DF . but the problem is when DF contain duplicate columns. We can
check if there are duplicate columns in DF then use the above approach else use
the simple approach .
Please let me know if its ok .
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]