gengliangwang opened a new pull request #34681:
URL: https://github.com/apache/spark/pull/34681


   <!--
   Thanks for sending a pull request!  Here are some tips for you:
     1. If this is your first time, please read our contributor guidelines: 
https://spark.apache.org/contributing.html
     2. Ensure you have added or run the appropriate tests for your PR: 
https://spark.apache.org/developer-tools.html
     3. If the PR is unfinished, add '[WIP]' in your PR title, e.g., 
'[WIP][SPARK-XXXX] Your PR title ...'.
     4. Be sure to keep the PR description updated to reflect all changes.
     5. Please write your PR title to summarize what this PR proposes.
     6. If possible, provide a concise example to reproduce the issue for a 
faster review.
     7. If you want to add a new configuration, please read the guideline first 
for naming configurations in
        
'core/src/main/scala/org/apache/spark/internal/config/ConfigEntry.scala'.
     8. If you want to add or modify an error type or message, please read the 
guideline first in
        'core/src/main/resources/error/README.md'.
   -->
   
   ### What changes were proposed in this pull request?
   <!--
   Please clarify what changes you are proposing. The purpose of this section 
is to outline the changes and how this PR fixes the issue. 
   If possible, please consider writing useful notes for better and faster 
reviews in your PR. See the examples below.
     1. If you refactor some codes with changing classes, showing the class 
hierarchy will help reviewers.
     2. If you fix some SQL features, you can provide some references of other 
DBMSes.
     3. If there is design documentation, please add the link.
     4. If there is a discussion in the mailing list, please add the link.
   -->
   Under ANSI mode(spark.sql.ansi.enabled=true), the function invocation of 
Spark SQL:
   
   - In general, it follows the `Store assignment` rules as storing the input 
values as the declared parameter type of the SQL functions
   - Special rules apply for string literals and untyped NULL. A NULL can be 
promoted to any other type, while a string literal can be promoted to any 
simple data type.
   
   
   ### Why are the changes needed?
   <!--
   Please clarify why the changes are needed. For instance,
     1. If you propose a new API, clarify the use case for a new API.
     2. If you fix a bug, you can clarify why it is a bug.
   -->
   Currently, the ANSI SQL mode resolves the function invocation with `Least 
Common Type Resolution` based on`Type precedence list`. After a closer look at 
the ANSI SQL standard, the "store assignment" syntax rules should be used for 
resolving the type coercion between the input and parameters of SQL function, 
while the `Type precedence list` is used for "Subject routine 
determination"(SQL function overloads).
   
![image](https://user-images.githubusercontent.com/1097932/142833343-25151c1b-ccda-407c-a831-6b6ec4cf642f.png)
   
   I have also done some data science among real-world SQL queries, the 
following implicit function casts are not allowed as per `Least Common Type 
Resolution` but they are commonly seen:
   
   - Numeric/Date/Timestamp => String, e.g. tableau generated query 
`CONCAT(DATE_ADD(%1, CAST(%2 AS INT)), SUBSTR(CAST(%1 AS TIMESTAMP), 11)) AS 
TIMESTAMP)`
   - Timestamp => Date, e.g `date_sub(now(), 7) < ...`
   - Double => Long, e.g.  `from_unixtime(updated/1000.0)`
   
   The changes in this PR is ANSI compatible and it is good for the adoption of 
ANSI SQL mode.
   
   ### Does this PR introduce _any_ user-facing change?
   <!--
   Note that it means *any* user-facing change including all aspects such as 
the documentation fix.
   If yes, please clarify the previous behavior and the change this PR proposes 
- provide the console output, description and/or an example to show the 
behavior difference if possible.
   If possible, please also clarify if this is a user-facing change compared to 
the released Spark versions or within the unreleased branches such as master.
   If no, write 'No'.
   -->
   Yes, Use store assignment rules for resolving function invocation under ANSI 
mode.
   
   ### How was this patch tested?
   <!--
   If tests were added, say they were added here. Please make sure to add some 
test cases that check the changes thoroughly including negative and positive 
cases if possible.
   If it was tested in a way different from regular unit tests, please clarify 
how you tested step by step, ideally copy and paste-able, so that other 
reviewers can test and check, and descendants can verify in the future.
   If tests were not added, please describe why they were not added and/or why 
it was difficult to add.
   If benchmark tests were added, please run the benchmarks in GitHub Actions 
for the consistent environment, and the instructions could accord to: 
https://spark.apache.org/developer-tools.html#github-workflow-benchmarks.
   -->
   Unit tests


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to