Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/6115#discussion_r30284085
  
    --- Diff: 
examples/src/main/scala/org/apache/spark/examples/ml/OneVsRestExample.scala ---
    @@ -0,0 +1,169 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.examples.ml
    +
    +import java.util.concurrent.TimeUnit.{NANOSECONDS => NANO}
    +
    +import scopt.OptionParser
    +
    +import org.apache.spark.{SparkContext, SparkConf}
    +import org.apache.spark.examples.mllib.AbstractParams
    +import org.apache.spark.ml.classification.{OneVsRest, LogisticRegression}
    +import org.apache.spark.ml.util.MetadataUtils
    +import org.apache.spark.mllib.evaluation.MulticlassMetrics
    +import org.apache.spark.mllib.regression.LabeledPoint
    +import org.apache.spark.mllib.util.MLUtils
    +import org.apache.spark.rdd.RDD
    +import org.apache.spark.sql.SQLContext
    +
    +/**
    + * An example runner for Multiclass to Binary Reduction with One Vs Rest.
    + * The example uses Logistic Regression as the base classifier. All 
parameters that
    + * can be specified on the base classifier can be passed in to the runner 
options.
    + * Run with
    + * {{{
    + * ./bin/run-example ml.OneVsRestExample [options]
    + * }}}
    + * For local mode, run
    + * {{{
    + * ./bin/spark-submit --class 
org.apache.spark.examples.ml.OneVsRestExample --driver-memory 1g
    + *   [examples JAR path] [options]
    + * }}}
    + * If you use it as a template to create your own app, please use 
`spark-submit` to submit your app.
    + */
    +object OneVsRestExample {
    +
    +  case class Params private[ml] (input: String = null,
    +      testInput: Option[String] = None,
    +      maxIter: Int = 100,
    +      tol: Double = 1E-6,
    +      fitIntercept: Boolean = true,
    +      regParam: Option[Double] = None,
    +      elasticNetParam: Option[Double] = None,
    +      fracTest: Double = 0.2) extends AbstractParams[Params]
    +
    +  def main(args: Array[String]) {
    +    val defaultParams = Params()
    +
    +    val parser = new OptionParser[Params]("OneVsRest Example") {
    +      head("OneVsRest Example: multiclass to binary reduction using 
OneVsRest")
    +      arg[String]("<input>")
    +        .text("input path to labeled examples")
    +        .required()
    +        .action((x, c) => c.copy(input = x))
    +      opt[Double]("fracTest")
    +        .text(s"fraction of data to hold out for testing.  If given option 
testInput, " +
    +        s"this option is ignored. default: ${defaultParams.fracTest}")
    +        .action((x, c) => c.copy(fracTest = x))
    +      opt[String]("testInput")
    +        .text("input path to test dataset.  If given, option fracTest is 
ignored")
    +        .action((x,c) => c.copy(testInput = Some(x)))
    +      opt[Int]("maxIter")
    +        .text(s"maximum number of iterations. default: 
${defaultParams.maxIter}")
    +        .action((x, c) => c.copy(maxIter = x))
    +      opt[Double]("tol")
    +        .text(s"the convergence tolerance of iterations. default: 
${defaultParams.tol}")
    +        .action((x, c) => c.copy(tol = x))
    +      opt[Double]("regParam")
    +        .text(s"the regularization parameter")
    +        .action((x,c) => c.copy(regParam = Some(x)))
    +      opt[Double]("elasticNetParam")
    +        .text(s"the ElasticNet mixing parameter")
    +        .action((x,c) => c.copy(elasticNetParam = Some(x)))
    +      checkConfig { params =>
    +        if (params.fracTest < 0 || params.fracTest >= 1) {
    +          failure(s"fracTest ${params.fracTest} value incorrect; should be 
in [0,1).")
    +        } else {
    +          success
    +        }
    +      }
    +    }
    +    parser.parse(args, defaultParams).map { params =>
    +      run(params)
    +    }.getOrElse {
    +      sys.exit(1)
    +    }
    +  }
    +
    +  private def run(params: Params) {
    +    val conf = new SparkConf().setAppName(s"OneVsRestExample with $params")
    +    val sc = new SparkContext(conf)
    +    val inputData = MLUtils.loadLibSVMFile(sc, params.input)
    +    val sqlContext = new SQLContext(sc)
    +    import sqlContext.implicits._
    +
    +    // compute the train/test split: if testInput is not provided use part 
of input.
    +    val data = params.testInput match {
    +      case Some(t) => Array[RDD[LabeledPoint]](inputData, 
MLUtils.loadLibSVMFile(sc, t))
    +      case None => {
    +        val f = params.fracTest
    +        inputData.randomSplit(Array(1 - f, f), seed = 12345)
    +      }
    +    }
    +    val Array(train, test) = data.map(_.toDF().cache())
    +    // instantiate the base classifier
    +    val classifier = new LogisticRegression()
    +    classifier.setMaxIter(params.maxIter)
    +    classifier.setTol(params.tol)
    +    params.regParam.foreach(classifier.setRegParam)
    --- End diff --
    
    The use of foreach here may confuse people not used to Scala.  Add comment:
    ```
    // Set regParam, elasticNetParam if specified in params
    ```


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to