Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/6113#discussion_r30428863
--- Diff: docs/ml-features.md ---
@@ -183,6 +183,86 @@ for words_label in wordsDataFrame.select("words",
"label").take(3):
</div>
</div>
+## PolynomialExpansion
+
+[Polynomial expansion](http://en.wikipedia.org/wiki/Polynomial_expansion)
is the process of expanding your features into a polynomial space, which is
formulated by an n-degree combination of original dimensions. A
[PolynomialExpansion](api/scala/index.html#org.apache.spark.ml.feature.PolynomialExpansion)
class provides this functionality. The example below shows how to expand your
features into a 3-degree polynomial space.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+import org.apache.spark.ml.feature.PolynomialExpansion
+
+val data = Array(
+ Vectors.dense(-2.0, 2.3),
+ Vectors.dense(0.0, 0.0),
+ Vectors.dense(0.6, -1.1)
+)
+val df =
sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
+val polynomialExpansion = new PolynomialExpansion()
+ .setInputCol("features")
+ .setOutputCol("polyFeatures")
+ .setDegree(3)
+val expandedFeatures = polynomialExpansion.transform(df)
+expandedFeatures.select("polyFeatures").take(3).foreach(println)
+{% endhighlight %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% highlight java %}
+import scala.Tuple2;
+
+import com.google.common.collect.Lists;
+
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.VectorUDT;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.Row;
+import org.apache.spark.sql.RowFactory;
+import org.apache.spark.sql.SQLContext;
+import org.apache.spark.sql.types.Metadata;
+import org.apache.spark.sql.types.StructField;
+import org.apache.spark.sql.types.StructType;
+
+JavaSparkContext jsc = ...
+SQLContext jsql = ...
+PolynomialExpansion polyExpansion = new PolynomialExpansion()
+ .setInputCol("features")
+ .setOutputCol("polyFeatures")
+ .setDegree(3);
+JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList(
+ RowFactory.create(Vectors.dense(-2.0, 2.3)),
+ RowFactory.create(Vectors.dense(0.0, 0.0)),
+ RowFactory.create(Vectors.dense(0.6, -1.1))
+));
+StructType schema = new StructType(new StructField[] {
+ new StructField("features", new VectorUDT(), false, Metadata.empty()),
+});
+DataFrame dataset = jsql.createDataFrame(data, schema);
+DataFrame polyDF = polyExpansion.transform(dataset);
+Row[] row = polyDF.select("polyFeatures").take(3);
+for (Row r : row) {
+ System.out.println((((Vector)r.get(0))));
+}
+{% endhighlight %}
+</div>
+
+<div data-lang="python" markdown="1">
+{% highlight python %}
+from pyspark.mllib.linalg import Vectors
+from pyspark.ml.feature import PolynomialExpansion
+df = sqlContext.createDataFrame(
+ [(Vectors.dense([-2.0, 2.3]), ), (Vectors.dense([0.0, 0.0]), ),
(Vectors.dense([0.6, -1.1]), )],
--- End diff --
Python style: Please use shorter lines. Here, 1 Vector per line will be
good.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]