Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/5779#discussion_r30535326
  
    --- Diff: 
mllib/src/main/scala/org/apache/spark/ml/feature/QuantileDiscretizer.scala ---
    @@ -0,0 +1,141 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.ml.feature
    +
    +import scala.collection.mutable
    +
    +import org.apache.spark.annotation.AlphaComponent
    +import org.apache.spark.ml._
    +import org.apache.spark.ml.attribute.NominalAttribute
    +import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
    +import org.apache.spark.ml.param.{IntParam, _}
    +import org.apache.spark.ml.util._
    +import org.apache.spark.rdd.RDD
    +import org.apache.spark.sql.types.{DoubleType, StructType}
    +import org.apache.spark.sql.{DataFrame, Row}
    +import org.apache.spark.util.random.XORShiftRandom
    +
    +/**
    + * Params for [[QuantileDiscretizer]].
    + */
    +private[feature] trait QuantileDiscretizerBase extends Params with 
HasInputCol with HasOutputCol {
    +
    +  /**
    +   * Number of buckets to collect data points, which should be a positive 
integer.
    +   * @group param
    +   */
    +  val numBuckets = new IntParam(this, "numBuckets",
    +    "Number of buckets to collect data points, which should be a positive 
integer.",
    +    ParamValidators.gtEq(2))
    +  setDefault(numBuckets -> 2)
    +
    +  /** @group getParam */
    +  def getNumBuckets: Int = getOrDefault(numBuckets)
    +}
    +
    +/**
    + * :: AlphaComponent ::
    + * `QuantileDiscretizer` takes a column with continuous features and 
outputs a column with binned
    + * categorical features.
    + */
    +@AlphaComponent
    +final class QuantileDiscretizer(override val uid: String)
    +  extends Estimator[Bucketizer] with QuantileDiscretizerBase {
    +
    +  def this() = this(Identifiable.randomUID("QuantileDiscretizer"))
    +
    +  /** @group setParam */
    +  def setNumBuckets(value: Int): this.type = set(numBuckets, value)
    +
    +  /** @group setParam */
    +  def setInputCol(value: String): this.type = set(inputCol, value)
    +
    +  /** @group setParam */
    +  def setOutputCol(value: String): this.type = set(outputCol, value)
    +
    +  override def transformSchema(schema: StructType): StructType = {
    +    SchemaUtils.checkColumnType(schema, $(inputCol), DoubleType)
    +    val inputFields = schema.fields
    +    require(inputFields.forall(_.name != $(outputCol)),
    +      s"Output column ${$(outputCol)} already exists.")
    +    val attr = NominalAttribute.defaultAttr.withName($(outputCol))
    +    val outputFields = inputFields :+ attr.toStructField()
    +    StructType(outputFields)
    +  }
    +
    +  override def fit(dataset: DataFrame): Bucketizer = {
    +    val input = dataset.select($(inputCol)).map { case Row(feature: 
Double) => feature }
    +    val samples = getSampledInput(input, $(numBuckets))
    +    val splits = Array(Double.NegativeInfinity) ++ findSplits(samples, 
$(numBuckets) - 1) ++
    +      Array(Double.PositiveInfinity)
    +    val bucketizer = new Bucketizer(uid).setSplits(splits)
    +    copyValues(bucketizer)
    +  }
    +
    +  /**
    +   * Sampling from the given dataset to collect quantile statistics.
    +   */
    +  private def getSampledInput(dataset: RDD[Double], numBins: Int): 
Array[Double] = {
    +    val totalSamples = dataset.count()
    +    assert(totalSamples > 0)
    +    val requiredSamples = math.max(numBins * numBins, 10000)
    +    val fraction = math.min(requiredSamples / dataset.count(), 1.0)
    +    dataset.sample(withReplacement = false, fraction, new 
XORShiftRandom().nextInt()).collect()
    +  }
    +
    +  /**
    +   * Compute split points with respect to the sample distribution.
    +   */
    +  private def findSplits(samples: Array[Double], numSplits: Int): 
Array[Double] = {
    +    val valueCountMap = samples.foldLeft(Map.empty[Double, Int]) { (m, x) 
=>
    +      m + ((x, m.getOrElse(x, 0) + 1))
    +    }
    +    val valueCounts = valueCountMap.toSeq.sortBy(_._1).toArray
    +    val possibleSplits = valueCounts.length
    +    if (possibleSplits <= numSplits) {
    +      valueCounts.map(_._1)
    +    } else {
    +      val stride: Double = samples.length.toDouble / (numSplits + 1)
    +      val splitsBuilder = mutable.ArrayBuilder.make[Double]
    +      var index = 1
    +      // currentCount: sum of counts of values that have been visited
    +      var currentCount = valueCounts(0)._2
    +      // targetCount: target value for `currentCount`.
    +      // If `currentCount` is closest value to `targetCount`,
    +      // then current value is a split threshold.
    +      // After finding a split threshold, `targetCount` is added by stride.
    +      var targetCount = stride
    +      while (index < valueCounts.length) {
    +        val previousCount = currentCount
    +        currentCount += valueCounts(index)._2
    +        val previousGap = math.abs(previousCount - targetCount)
    +        val currentGap = math.abs(currentCount - targetCount)
    +        // If adding count of current value to currentCount
    +        // makes the gap between currentCount and targetCount smaller,
    +        // previous value is a split threshold.
    +        if (previousGap < currentGap) {
    +          splitsBuilder += valueCounts(index - 1)._1
    --- End diff --
    
    I'm worried that this will not work when the final valueCounts bucket has a 
lot of values.  In that case, in the final iteration where index = 
valueCounts.length - 1, previousGap will be > currentGap, and we will never add 
the last value (valueCounts.last._1).  A test with numBuckets = 3 and values
    1,2,3,3,3,3,3,3,3 might catch this, though you might need to play around 
with the numbers.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to