HeartSaVioR commented on code in PR #38911: URL: https://github.com/apache/spark/pull/38911#discussion_r1041860498
########## connector/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaMicroBatchStream.scala: ########## @@ -316,6 +320,50 @@ private[kafka010] class KafkaMicroBatchStream( } } + private def assertEndOffsetForTriggerAvailableNow( + endPartitionOffsets: Map[TopicPartition, Long]): Unit = { + val tpsForPrefetched = allDataForTriggerAvailableNow.keySet + val tpsForEndOffset = endPartitionOffsets.keySet + + if (tpsForPrefetched != tpsForEndOffset) { + throw KafkaExceptions.topicPartitionsInEndOffsetAreNotSameWithPrefetched( + tpsForPrefetched, tpsForEndOffset) + } + + val endOffsetHasGreaterThanPrefetched = { + allDataForTriggerAvailableNow.keySet.exists { tp => + val offsetFromPrefetched = allDataForTriggerAvailableNow(tp) + val offsetFromEndOffset = endPartitionOffsets(tp) + offsetFromEndOffset > offsetFromPrefetched + } + } + if (endOffsetHasGreaterThanPrefetched) { + throw KafkaExceptions.endOffsetHasGreaterOffsetForTopicPartitionThanPrefetched( + allDataForTriggerAvailableNow, endPartitionOffsets) + } + + val latestOffsets = kafkaOffsetReader.fetchLatestOffsets(Some(endPartitionOffsets)) Review Comment: If we don't fetch the latest offset with latest topic-partitions from Kafka again, what we are trying to guard against? If someone turns on failOnDataLoss and runs the query with Trigger.AvailableNow, it will just move on when specific topic partition is dropped, leading that it never reaches the end state (prepared offset). -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org