kings129 opened a new pull request, #40858:
URL: https://github.com/apache/spark/pull/40858

   … value for unmatched row
   
   ### What changes were proposed in this pull request?
   
   When doing an outer join with joinWith on DataFrames, unmatched rows return 
Row objects with null fields instead of a single null value. This is not a 
expected behavior, and it's a regression introduced in [this 
commit](https://github.com/apache/spark/commit/cd92f25be5a221e0d4618925f7bc9dfd3bb8cb59).
 This pull request aims to fix the regression, note this is not a full rollback 
of the commit, do not add back "schema" variable.
   
   ```
   case class ClassData(a: String, b: Int)
   val left = Seq(ClassData("a", 1), ClassData("b", 2)).toDF
   val right = Seq(ClassData("x", 2), ClassData("y", 3)).toDF
   
   left.joinWith(right, left("b") === right("b"), "left_outer").collect
   ```
   
   ```
   Wrong results (current behavior):    Array(([a,1],[null,null]), 
([b,2],[x,2]))
   Correct results:                     Array(([a,1],null), ([b,2],[x,2]))
   ```
   
   ### Why are the changes needed?
   
   We need to address the regression mentioned above. It results in unexpected 
behavior changes in the Dataframe joinWith API between versions 2.4.8 and 
3.0.0+. This could potentially cause data correctness issues for users who 
expect the old behavior when using Spark 3.0.0+.
   
   ### Does this PR introduce _any_ user-facing change?
   
   No
   
   ### How was this patch tested?
   
   Added unit test (use the same test in previous [closed pull 
request](https://github.com/apache/spark/pull/35140), credit to Clément de 
Groc) Run sql-core and sql-catalyst submodules locally with ./build/mvn clean 
package -pl sql/core,sql/catalyst
   
   Closes #40755 from kings129/encoder_bug_fix.
   
   Authored-by: --global <[email protected]>
   
   <!--
   Thanks for sending a pull request!  Here are some tips for you:
     1. If this is your first time, please read our contributor guidelines: 
https://spark.apache.org/contributing.html
     2. Ensure you have added or run the appropriate tests for your PR: 
https://spark.apache.org/developer-tools.html
     3. If the PR is unfinished, add '[WIP]' in your PR title, e.g., 
'[WIP][SPARK-XXXX] Your PR title ...'.
     4. Be sure to keep the PR description updated to reflect all changes.
     5. Please write your PR title to summarize what this PR proposes.
     6. If possible, provide a concise example to reproduce the issue for a 
faster review.
     7. If you want to add a new configuration, please read the guideline first 
for naming configurations in
        
'core/src/main/scala/org/apache/spark/internal/config/ConfigEntry.scala'.
     8. If you want to add or modify an error type or message, please read the 
guideline first in
        'core/src/main/resources/error/README.md'.
   -->
   
   ### What changes were proposed in this pull request?
   <!--
   Please clarify what changes you are proposing. The purpose of this section 
is to outline the changes and how this PR fixes the issue. 
   If possible, please consider writing useful notes for better and faster 
reviews in your PR. See the examples below.
     1. If you refactor some codes with changing classes, showing the class 
hierarchy will help reviewers.
     2. If you fix some SQL features, you can provide some references of other 
DBMSes.
     3. If there is design documentation, please add the link.
     4. If there is a discussion in the mailing list, please add the link.
   -->
   
   
   ### Why are the changes needed?
   <!--
   Please clarify why the changes are needed. For instance,
     1. If you propose a new API, clarify the use case for a new API.
     2. If you fix a bug, you can clarify why it is a bug.
   -->
   
   
   ### Does this PR introduce _any_ user-facing change?
   <!--
   Note that it means *any* user-facing change including all aspects such as 
the documentation fix.
   If yes, please clarify the previous behavior and the change this PR proposes 
- provide the console output, description and/or an example to show the 
behavior difference if possible.
   If possible, please also clarify if this is a user-facing change compared to 
the released Spark versions or within the unreleased branches such as master.
   If no, write 'No'.
   -->
   
   
   ### How was this patch tested?
   <!--
   If tests were added, say they were added here. Please make sure to add some 
test cases that check the changes thoroughly including negative and positive 
cases if possible.
   If it was tested in a way different from regular unit tests, please clarify 
how you tested step by step, ideally copy and paste-able, so that other 
reviewers can test and check, and descendants can verify in the future.
   If tests were not added, please describe why they were not added and/or why 
it was difficult to add.
   If benchmark tests were added, please run the benchmarks in GitHub Actions 
for the consistent environment, and the instructions could accord to: 
https://spark.apache.org/developer-tools.html#github-workflow-benchmarks.
   -->
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to