Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/6127#discussion_r30862756
--- Diff:
mllib/src/test/java/org/apache/spark/ml/feature/JavaHashingTFSuite.java ---
@@ -63,17 +63,22 @@ public void hashingTF() {
new StructField("label", DataTypes.DoubleType, false,
Metadata.empty()),
new StructField("sentence", DataTypes.StringType, false,
Metadata.empty())
});
- DataFrame sentenceDataFrame = jsql.createDataFrame(jrdd, schema);
- Tokenizer tokenizer = new
Tokenizer().setInputCol("sentence").setOutputCol("words");
- DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame);
+ DataFrame sentenceData = jsql.createDataFrame(jrdd, schema);
+ Tokenizer tokenizer = new Tokenizer()
+ .setInputCol("sentence")
+ .setOutputCol("words");
+ DataFrame wordsData = tokenizer.transform(sentenceData);
int numFeatures = 20;
HashingTF hashingTF = new HashingTF()
.setInputCol("words")
- .setOutputCol("features")
+ .setOutputCol("rawFeatures")
.setNumFeatures(numFeatures);
- DataFrame featurized = hashingTF.transform(wordsDataFrame);
- for (Row r : featurized.select("features", "words", "label").take(3)) {
+ DataFrame featurizedData = hashingTF.transform(wordsData);
+ IDF idf = new
IDF().setInputCol("rawFeatures").setOutputCol("features");
+ IDFModel idfModel = idf.fit(featurizedData);
+ DataFrame rescaledData = idfModel.transform(featurizedData);
+ for (Row r : rescaledData.select("features", "label").take(3)) {
--- End diff --
`take(3)` -> `collect()`?
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]