cloud-fan commented on code in PR #37011:
URL: https://github.com/apache/spark/pull/37011#discussion_r1264788328
##########
sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala:
##########
@@ -464,6 +464,29 @@ class Dataset[T] private[sql](
*/
def as[U : Encoder]: Dataset[U] = Dataset[U](sparkSession, logicalPlan)
+ /**
+ * Returns a new DataFrame where each row is reconciled to match the
specified schema. Spark will:
+ * <ul>
+ * <li>Reorder columns and/or inner fields by name to match the specified
schema.</li>
+ * <li>Project away columns and/or inner fields that are not needed by the
specified schema.
+ * Missing columns and/or inner fields (present in the specified schema
but not input DataFrame)
+ * lead to failures.</li>
+ * <li>Cast the columns and/or inner fields to match the data types in the
specified schema, if
+ * the types are compatible, e.g., numeric to numeric (error if
overflows), but not string to
+ * int.</li>
+ * <li>Carry over the metadata from the specified schema, while the
columns and/or inner fields
+ * still keep their own metadata if not overwritten by the specified
schema.</li>
+ * <li>Fail if the nullability are not compatible. For example, the column
and/or inner field is
+ * nullable but the specified schema requires them to be not nullable.</li>
+ * </ul>
+ *
+ * @group basic
+ * @since 3.4.0
+ */
+ def as(schema: StructType): DataFrame = withPlan {
+ Project.matchSchema(logicalPlan, schema, sparkSession.sessionState.conf)
Review Comment:
Good question. char/varchar is not officially supported in the type system
so I think it's OK to ignore char/varchar here.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]