wbo4958 commented on code in PR #44690:
URL: https://github.com/apache/spark/pull/44690#discussion_r1479217821
##########
core/src/main/scala/org/apache/spark/resource/ResourceAllocator.scala:
##########
@@ -20,6 +20,49 @@ package org.apache.spark.resource
import scala.collection.mutable
import org.apache.spark.SparkException
+import org.apache.spark.resource.ResourceAmountUtils.ONE_ENTIRE_RESOURCE
+
+private[spark] object ResourceAmountUtils {
+ /**
+ * Using "double" to do the resource calculation may encounter a problem of
precision loss. Eg
+ *
+ * scala> val taskAmount = 1.0 / 9
+ * taskAmount: Double = 0.1111111111111111
+ *
+ * scala> var total = 1.0
+ * total: Double = 1.0
+ *
+ * scala> for (i <- 1 to 9 ) {
+ * | if (total >= taskAmount) {
+ * | total -= taskAmount
+ * | println(s"assign $taskAmount for task $i, total left: $total")
+ * | } else {
+ * | println(s"ERROR Can't assign $taskAmount for task $i, total
left: $total")
+ * | }
+ * | }
+ * assign 0.1111111111111111 for task 1, total left: 0.8888888888888888
+ * assign 0.1111111111111111 for task 2, total left: 0.7777777777777777
+ * assign 0.1111111111111111 for task 3, total left: 0.6666666666666665
+ * assign 0.1111111111111111 for task 4, total left: 0.5555555555555554
+ * assign 0.1111111111111111 for task 5, total left: 0.44444444444444425
+ * assign 0.1111111111111111 for task 6, total left: 0.33333333333333315
+ * assign 0.1111111111111111 for task 7, total left: 0.22222222222222204
+ * assign 0.1111111111111111 for task 8, total left: 0.11111111111111094
+ * ERROR Can't assign 0.1111111111111111 for task 9, total left:
0.11111111111111094
+ *
+ * So we multiply ONE_ENTIRE_RESOURCE to convert the double to long to avoid
this limitation.
+ * Double can display up to 16 decimal places, so we set the factor to
+ * 10, 000, 000, 000, 000, 000L.
+ */
+ final val ONE_ENTIRE_RESOURCE: Long = 10000000000000000L
Review Comment:
> Sometimes 1/n as a float is bigger than 1/n, sometimes smaller, and the
problem occurs when it's bigger
Yeah, Good point. I also thought about this issue when doing this PR. The
principle of this PR is to use the **final value** of 1/n to do the
calculation, if it's bigger than the real "1/n", that's fine, spark will only
assign the resources to **"n-1"** tasks instead of **n** tasks. Because Spark
thinks the **"final bigger 1/n"** is the final value the user would like to
set. What Spark should do is do the correct calculation based on the **final
"1/n"** no matter if it's bigger or smaller.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]