GideonPotok commented on code in PR #45453:
URL: https://github.com/apache/spark/pull/45453#discussion_r1536889413


##########
sql/core/src/test/scala/org/apache/spark/sql/execution/benchmark/CollationBenchmark.scala:
##########
@@ -0,0 +1,121 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.sql.execution.benchmark
+
+import scala.util.Random
+
+import org.apache.spark.benchmark.Benchmark
+import org.apache.spark.sql.{DataFrame}
+import org.apache.spark.sql.catalyst.util.CollationFactory
+import org.apache.spark.sql.functions._
+import org.apache.spark.unsafe.types.UTF8String
+
+/**
+ * Benchmark to measure performance for joins. To run this benchmark:
+ * {{{
+ *   1. without sbt:
+ *      bin/spark-submit --class <this class>
+ *        --jars <spark core test jar>,<spark catalyst test jar> <spark sql 
test jar>
+ *   2. build/sbt "sql/Test/runMain 
org.apache.spark.sql.execution.benchmark.CollationBenchmark"
+ *   3. generate result:
+ *      SPARK_GENERATE_BENCHMARK_FILES=1 build/sbt "sql/Test/runMain <this 
class>"
+ *      Results will be written to "benchmarks/JoinBenchmark-results.txt".
+ * }}}
+ */
+
+object CollationBenchmark extends SqlBasedBenchmark {
+  private val collationTypes = Seq("UTF8_BINARY", "UTF8_BINARY_LCASE", 
"UNICODE", "UNICODE_CI")
+
+  def generateUTF8Strings(n: Int): Seq[UTF8String] = {
+    // Generate n UTF8Strings
+    Seq("ABC", "aBC", "abc", "DEF", "def", "GHI", "ghi", "JKL", "jkl",
+      "MNO", "mno", "PQR", "pqr", "STU", "stu", "VWX", "vwx", 
"YZ").map(UTF8String.fromString) ++
+    (18 to n).map(i => UTF8String.fromString(Random.nextString(i % 
25))).sortBy(_.hashCode())
+  }
+
+  def benchmarkUTFString(collationTypes: Seq[String], utf8Strings: 
Seq[UTF8String]): Unit = {
+    val sublistStrings = utf8Strings.slice(0, 200)
+    val benchmark = collationTypes.foldLeft(
+      new Benchmark(s"collation unit benchmarks", utf8Strings.size, output = 
output)) {
+      (b, collationType) =>
+        val collation = CollationFactory.fetchCollation(collationType)
+        b.addCase(s"equalsFunction - $collationType") { _ =>
+          sublistStrings.foreach(s1 =>
+            utf8Strings.foreach(s =>
+            collation.equalsFunction(s, s1).booleanValue()
+            )
+          )
+        }
+        b.addCase(s"collator.compare - $collationType") { _ =>
+          sublistStrings.foreach(s1 =>
+            utf8Strings.foreach(s =>
+              collation.comparator.compare(s, s1)
+            )
+          )
+        }
+        b.addCase(s"hashFunction - $collationType") { _ =>
+          sublistStrings.foreach(s1 =>
+            utf8Strings.foreach(s =>
+              collation.hashFunction.applyAsLong(s)
+            )
+          )
+        }
+        b
+    }
+    benchmark.run()
+  }
+
+  def df1: DataFrame = {
+    val d = spark.createDataFrame(Seq(
+      ("ABC", "ABC"), ("aBC", "abc"), ("abc", "ABC"), ("DEF", "DEF"), ("def", 
"DEF"),

Review Comment:
   Done, inputs are the now same. Let me know what you think.
   
   Local results are as follows (It shows that UTF8_BINARY and UNICODE have 
very fast equals function relative to the other collations):
   
   
   ```
   [info] filter df column with collation:                     Best Time(ms)   
Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
   [info] 
-----------------------------------------------------------------------------------------------------------------------------------
   [info] filter df column with collation - UTF8_BINARY_LCASE              5    
          6           1          1.9         528.3       1.0X
   [info] filter df column with collation - UNICODE                        4    
          5           1          2.3         427.4       1.2X
   [info] filter df column with collation - UTF8_BINARY                    5    
          5           1          2.2         464.2       1.1X
   [info] filter df column with collation - UNICODE_CI                     5    
          6           1          1.9         531.1       1.0X
   [info] Running benchmark: collation unit benchmarks
   [info]   Running case: equalsFunction - UTF8_BINARY_LCASE
   [info]   Stopped after 2 iterations, 3897 ms
   [info]   Running case: collator.compare - UTF8_BINARY_LCASE
   [info]   Stopped after 2 iterations, 4164 ms
   [info]   Running case: hashFunction - UTF8_BINARY_LCASE
   [info]   Stopped after 2 iterations, 3782 ms
   [info]   Running case: equalsFunction - UNICODE
   [info]   Stopped after 6 iterations, 2142 ms
   [info]   Running case: collator.compare - UNICODE
   [info]   Stopped after 2 iterations, 7718 ms
   [info]   Running case: hashFunction - UNICODE
   [info]   Stopped after 2 iterations, 16612 ms
   [info]   Running case: equalsFunction - UTF8_BINARY
   [info]   Stopped after 7 iterations, 2088 ms
   [info]   Running case: collator.compare - UTF8_BINARY
   [info]   Stopped after 4 iterations, 2112 ms
   [info]   Running case: hashFunction - UTF8_BINARY
   [info]   Stopped after 3 iterations, 2324 ms
   [info]   Running case: equalsFunction - UNICODE_CI
   [info]   Stopped after 2 iterations, 8298 ms
   [info]   Running case: collator.compare - UNICODE_CI
   [info]   Stopped after 2 iterations, 6933 ms
   [info]   Running case: hashFunction - UNICODE_CI
   [info]   Stopped after 2 iterations, 12882 ms
   [info] OpenJDK 64-Bit Server VM 17.0.10+7-LTS on Mac OS X 14.4
   [info] Apple M3 Max
   [info] collation unit benchmarks:                Best Time(ms)   Avg 
Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
   [info] 
------------------------------------------------------------------------------------------------------------------------
   [info] equalsFunction - UTF8_BINARY_LCASE                 1948           
1949           1          0.0      194813.5       1.0X
   [info] collator.compare - UTF8_BINARY_LCASE               2081           
2082           1          0.0      208136.3       0.9X
   [info] hashFunction - UTF8_BINARY_LCASE                   1890           
1891           2          0.0      189021.8       1.0X
   [info] equalsFunction - UNICODE                            357            
357           0          0.0       35675.0       5.5X
   [info] collator.compare - UNICODE                         3848           
3859          16          0.0      384793.0       0.5X
   [info] hashFunction - UNICODE                             8304           
8306           3          0.0      830445.5       0.2X
   [info] equalsFunction - UTF8_BINARY                        296            
298           2          0.0       29608.1       6.6X
   [info] collator.compare - UTF8_BINARY                      528            
528           0          0.0       52779.0       3.7X
   [info] hashFunction - UTF8_BINARY                          773            
775           1          0.0       77336.4       2.5X
   [info] equalsFunction - UNICODE_CI                        4141           
4149          12          0.0      414060.1       0.5X
   [info] collator.compare - UNICODE_CI                      3461           
3467           8          0.0      346055.8       0.6X
   [info] hashFunction - UNICODE_CI                          6418           
6441          33          0.0      641794.3       0.3X
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to