MaxGekk commented on code in PR #45453:
URL: https://github.com/apache/spark/pull/45453#discussion_r1538045707


##########
sql/core/benchmarks/CollationBenchmark-results.txt:
##########
@@ -0,0 +1,26 @@
+OpenJDK 64-Bit Server VM 17.0.10+7-LTS on Linux 6.5.0-1016-azure
+AMD EPYC 7763 64-Core Processor
+filter df column with collation:                     Best Time(ms)   Avg 
Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
+-----------------------------------------------------------------------------------------------------------------------------------
+filter df column with collation - UNICODE_CI                   403            
463          39          0.0    20147470.0       1.0X
+filter df column with collation - UNICODE                      187            
223          37          0.0     9339586.0       2.2X
+filter df column with collation - UTF8_BINARY_LCASE            426            
434           7          0.0    21300903.4       0.9X
+filter df column with collation - UTF8_BINARY                  188            
199           5          0.0     9403169.1       2.1X
+
+OpenJDK 64-Bit Server VM 17.0.10+7-LTS on Linux 6.5.0-1016-azure
+AMD EPYC 7763 64-Core Processor
+collation unit benchmarks:                Best Time(ms)   Avg Time(ms)   
Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
+------------------------------------------------------------------------------------------------------------------------
+equalsFunction - UTF8_BINARY                          0              0         
  0         10.4          96.6       1.0X

Review Comment:
   Could you increase the number of iterations to have execution time at least 
> 0.



##########
sql/core/src/test/scala/org/apache/spark/sql/execution/benchmark/CollationBenchmark.scala:
##########
@@ -0,0 +1,117 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.sql.execution.benchmark
+
+import org.apache.spark.benchmark.Benchmark
+import org.apache.spark.sql.DataFrame
+import org.apache.spark.sql.catalyst.util.CollationFactory
+import org.apache.spark.sql.functions._
+import org.apache.spark.unsafe.types.UTF8String
+
+/**
+ * Benchmark to measure performance for comparisons between collated strings. 
To run this benchmark:
+ * {{{
+ *   1. without sbt:
+ *      bin/spark-submit --class <this class>
+ *        --jars <spark core test jar>,<spark catalyst test jar> <spark sql 
test jar>
+ *   2. build/sbt "sql/Test/runMain 
org.apache.spark.sql.execution.benchmark.CollationBenchmark"
+ *   3. generate result:
+ *      SPARK_GENERATE_BENCHMARK_FILES=1 build/sbt "sql/Test/runMain <this 
class>"
+ *      Results will be written to "benchmarks/CollationBenchmark-results.txt".
+ * }}}
+ */
+
+object CollationBenchmark extends SqlBasedBenchmark {
+  private val collationTypes = Seq("UTF8_BINARY_LCASE", "UNICODE", 
"UTF8_BINARY", "UNICODE_CI")
+
+  def generateSeqInput(n: Long): Seq[UTF8String] = {
+    val input = Seq("ABC", "ABC", "aBC", "aBC", "abc", "abc", "DEF", "DEF", 
"def",
+      "def", "GHI", "ghi",
+      "JKL", "jkl", "MNO", "mno", "PQR", "pqr", "STU", "stu", "VWX", "vwx", 
"YZ",
+      "ABC", "ABC", "aBC", "aBC", "abc", "abc", "DEF", "DEF", "def", "def", 
"GHI", "ghi",
+      "JKL", "jkl", "MNO", "mno", "PQR", "pqr", "STU", "stu", "VWX", "vwx", 
"YZ")
+      .map(UTF8String.fromString)
+    val inputLong: Seq[UTF8String] = (0L until n).map(i => input(i.toInt % 
input.size))
+    inputLong
+  }
+
+  private def getDataFrame(strings: Seq[String]): DataFrame = {
+    val asPairs = strings.sliding(2, 1).toSeq.map {
+      case Seq(s1, s2) => (s1, s2)
+    }
+    val d = spark.createDataFrame(asPairs).toDF("s1", "s2")
+    d
+  }
+
+  private def generateDataframeInput(l: Long): DataFrame = {
+    getDataFrame(generateSeqInput(l).map(_.toString))
+  }
+
+  def benchmarkUTFString(collationTypes: Seq[String], utf8Strings: 
Seq[UTF8String]): Unit = {
+    val sublistStrings = utf8Strings
+
+    val benchmark = new Benchmark("collation unit benchmarks", 
utf8Strings.size, output = output)
+    collationTypes.foreach(collationType => {
+      val collation = CollationFactory.fetchCollation(collationType)
+      benchmark.addCase(s"equalsFunction - $collationType") { _ =>
+        sublistStrings.foreach(s1 =>
+          utf8Strings.foreach(s =>
+            collation.equalsFunction(s, s1).booleanValue()
+          )
+        )
+      }
+      benchmark.addCase(s"collator.compare - $collationType") { _ =>
+        sublistStrings.foreach(s1 =>
+          utf8Strings.foreach(s =>
+            collation.comparator.compare(s, s1)
+          )
+        )
+      }
+      benchmark.addCase(s"hashFunction - $collationType") { _ =>
+        sublistStrings.foreach(_ =>
+          utf8Strings.foreach(s =>
+            collation.hashFunction.applyAsLong(s)
+          )
+        )
+      }
+    }
+    )
+    benchmark.run()
+  }
+
+  def benchmarkFilterEqual(collationTypes: Seq[String],
+                           dfUncollated: DataFrame): Unit = {
+    val benchmark =
+      new Benchmark("filter df column with collation", dfUncollated.count(), 
output = output)
+    collationTypes.foreach(collationType => {
+      val dfCollated = dfUncollated.selectExpr(
+        s"collate(s2, '$collationType') as k2_$collationType",
+        s"collate(s1, '$collationType') as k1_$collationType")
+      benchmark.addCase(s"filter df column with collation - $collationType") { 
_ =>
+        dfCollated.where(col(s"k1_$collationType") === 
col(s"k2_$collationType"))
+          .queryExecution.executedPlan.executeCollect()

Review Comment:
   Could you elaborate a little but why do you use the `executeCollect()` 
action instead of writing to `noop`?



##########
sql/core/src/test/scala/org/apache/spark/sql/execution/benchmark/CollationBenchmark.scala:
##########
@@ -0,0 +1,117 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.sql.execution.benchmark
+
+import org.apache.spark.benchmark.Benchmark
+import org.apache.spark.sql.DataFrame
+import org.apache.spark.sql.catalyst.util.CollationFactory
+import org.apache.spark.sql.functions._
+import org.apache.spark.unsafe.types.UTF8String
+
+/**
+ * Benchmark to measure performance for comparisons between collated strings. 
To run this benchmark:
+ * {{{
+ *   1. without sbt:
+ *      bin/spark-submit --class <this class>
+ *        --jars <spark core test jar>,<spark catalyst test jar> <spark sql 
test jar>
+ *   2. build/sbt "sql/Test/runMain 
org.apache.spark.sql.execution.benchmark.CollationBenchmark"
+ *   3. generate result:
+ *      SPARK_GENERATE_BENCHMARK_FILES=1 build/sbt "sql/Test/runMain <this 
class>"
+ *      Results will be written to "benchmarks/CollationBenchmark-results.txt".
+ * }}}
+ */
+
+object CollationBenchmark extends SqlBasedBenchmark {
+  private val collationTypes = Seq("UTF8_BINARY_LCASE", "UNICODE", 
"UTF8_BINARY", "UNICODE_CI")
+
+  def generateSeqInput(n: Long): Seq[UTF8String] = {
+    val input = Seq("ABC", "ABC", "aBC", "aBC", "abc", "abc", "DEF", "DEF", 
"def",
+      "def", "GHI", "ghi",
+      "JKL", "jkl", "MNO", "mno", "PQR", "pqr", "STU", "stu", "VWX", "vwx", 
"YZ",
+      "ABC", "ABC", "aBC", "aBC", "abc", "abc", "DEF", "DEF", "def", "def", 
"GHI", "ghi",
+      "JKL", "jkl", "MNO", "mno", "PQR", "pqr", "STU", "stu", "VWX", "vwx", 
"YZ")
+      .map(UTF8String.fromString)
+    val inputLong: Seq[UTF8String] = (0L until n).map(i => input(i.toInt % 
input.size))
+    inputLong
+  }
+
+  private def getDataFrame(strings: Seq[String]): DataFrame = {
+    val asPairs = strings.sliding(2, 1).toSeq.map {
+      case Seq(s1, s2) => (s1, s2)
+    }
+    val d = spark.createDataFrame(asPairs).toDF("s1", "s2")
+    d
+  }
+
+  private def generateDataframeInput(l: Long): DataFrame = {
+    getDataFrame(generateSeqInput(l).map(_.toString))
+  }
+
+  def benchmarkUTFString(collationTypes: Seq[String], utf8Strings: 
Seq[UTF8String]): Unit = {
+    val sublistStrings = utf8Strings
+
+    val benchmark = new Benchmark("collation unit benchmarks", 
utf8Strings.size, output = output)
+    collationTypes.foreach(collationType => {
+      val collation = CollationFactory.fetchCollation(collationType)
+      benchmark.addCase(s"equalsFunction - $collationType") { _ =>
+        sublistStrings.foreach(s1 =>
+          utf8Strings.foreach(s =>
+            collation.equalsFunction(s, s1).booleanValue()
+          )
+        )
+      }
+      benchmark.addCase(s"collator.compare - $collationType") { _ =>
+        sublistStrings.foreach(s1 =>
+          utf8Strings.foreach(s =>
+            collation.comparator.compare(s, s1)
+          )
+        )
+      }
+      benchmark.addCase(s"hashFunction - $collationType") { _ =>
+        sublistStrings.foreach(_ =>
+          utf8Strings.foreach(s =>
+            collation.hashFunction.applyAsLong(s)
+          )
+        )
+      }
+    }
+    )
+    benchmark.run()
+  }
+
+  def benchmarkFilterEqual(collationTypes: Seq[String],
+                           dfUncollated: DataFrame): Unit = {

Review Comment:
   fix indentation, see 
https://github.com/databricks/scala-style-guide?tab=readme-ov-file#indent



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to