sahnib commented on code in PR #45376:
URL: https://github.com/apache/spark/pull/45376#discussion_r1577007339
##########
sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala:
##########
@@ -739,6 +741,128 @@ class KeyValueGroupedDataset[K, V] private[sql](
)
}
+ /**
+ * (Scala-specific)
+ * Invokes methods defined in the stateful processor used in arbitrary state
API v2.
+ * We allow the user to act on per-group set of input rows along with keyed
state and the
+ * user can choose to output/return 0 or more rows.
+ * For a streaming dataframe, we will repeatedly invoke the interface
methods for new rows
+ * in each trigger and the user's state/state variables will be stored
persistently across
+ * invocations.
+ *
+ * @tparam U The type of the output objects. Must be encodable to Spark SQL
types.
+ * @param statefulProcessor Instance of statefulProcessor whose functions
will
+ * be invoked by the operator.
+ * @param timeMode The time mode semantics of the stateful
processor for timers and TTL.
+ * @param eventTimeColumnName eventTime column in the output dataset. Any
operations after
+ * transformWithState will use the new
eventTimeColumn. The user
+ * needs to ensure that the eventTime for emitted
output adheres to
+ * the watermark boundary, otherwise streaming
query will fail.
+ * @param outputMode The output mode of the stateful processor.
+ *
+ * See [[Encoder]] for more details on what types are encodable to Spark SQL.
+ */
+ private[sql] def transformWithState[U: Encoder](
+ statefulProcessor: StatefulProcessor[K, V, U],
+ timeMode: TimeMode,
+ eventTimeColumnName: String,
+ outputMode: OutputMode): Dataset[U] = {
+ val existingWatermarkDelay = logicalPlan.flatMap {
+ case EventTimeWatermark(_, delay, _) => Seq(delay)
+ case _ => Seq()
+ }
+
+ if (existingWatermarkDelay.isEmpty) {
+ throw QueryCompilationErrors.cannotAssignEventTimeColumn()
+ }
+
+ val transformWithState = TransformWithState[K, V, U](
+ groupingAttributes,
+ dataAttributes,
+ statefulProcessor,
+ timeMode,
+ outputMode,
+ child = logicalPlan
+ )
+
+ val twsDS = Dataset[U](
+ sparkSession,
+ transformWithState
+ )
+
+ val delay = existingWatermarkDelay.head
+
+ Dataset[U](sparkSession, EliminateEventTimeWatermark(
+ UpdateEventTimeWatermarkColumn(
+ UnresolvedAttribute(eventTimeColumnName),
+ delay,
+ twsDS.logicalPlan)))
+ }
+
+ /**
+ * (Scala-specific)
+ * Invokes methods defined in the stateful processor used in arbitrary state
API v2.
+ * Functions as the function above, but with additional initial state.
+ *
+ * @tparam U The type of the output objects. Must be encodable to Spark SQL
types.
+ * @tparam S The type of initial state objects. Must be encodable to Spark
SQL types.
+ * @param statefulProcessor Instance of statefulProcessor whose functions
will
+ * be invoked by the operator.
+ * @param timeMode The time mode semantics of the stateful
processor for
+ * timers and TTL.
+ * @param eventTimeColumnName eventTime column in the output dataset. Any
operations after
+ * transformWithState will use the new
eventTimeColumn. The user
+ * needs to ensure that the eventTime for emitted
output adheres to
+ * the watermark boundary, otherwise streaming
query will fail.
+ * @param outputMode The output mode of the stateful processor.
+ * @param initialState User provided initial state that will be used
to initiate state for
+ * the query in the first batch.
+ *
+ * See [[Encoder]] for more details on what types are encodable to Spark SQL.
+ */
+ private[sql] def transformWithState[U: Encoder, S: Encoder](
+ statefulProcessor: StatefulProcessorWithInitialState[K, V, U, S],
+ timeMode: TimeMode,
+ eventTimeColumnName: String,
+ outputMode: OutputMode,
+ initialState: KeyValueGroupedDataset[K, S]): Dataset[U] = {
+ val existingWatermarkDelay = logicalPlan.collect {
+ case EventTimeWatermark(_, delay, _) => delay
+ }
+
+ if (existingWatermarkDelay.isEmpty) {
Review Comment:
added a private method to consolidate.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]