zhengruifeng opened a new pull request, #46519: URL: https://github.com/apache/spark/pull/46519
### What changes were proposed in this pull request? Implement the missing function validation in ApplyInXXX https://github.com/apache/spark/pull/46397 fixed this issue for `Cogrouped.ApplyInPandas`, this PR fix remaining methods. ### Why are the changes needed? for better error message: ``` In [12]: df1 = spark.range(11) In [13]: df2 = df1.groupby("id").applyInPandas(lambda: 1, StructType([StructField("d", DoubleType())])) In [14]: df2.show() ``` before this PR, an invalid function causes weird execution errors: ``` 24/05/10 11:37:36 ERROR Executor: Exception in task 0.0 in stage 10.0 (TID 36) org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/worker.py", line 1834, in main process() File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/worker.py", line 1826, in process serializer.dump_stream(out_iter, outfile) File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/sql/pandas/serializers.py", line 531, in dump_stream return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/sql/pandas/serializers.py", line 104, in dump_stream for batch in iterator: File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/sql/pandas/serializers.py", line 524, in init_stream_yield_batches for series in iterator: File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/worker.py", line 1610, in mapper return f(keys, vals) ^^^^^^^^^^^^^ File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/worker.py", line 488, in <lambda> return lambda k, v: [(wrapped(k, v), to_arrow_type(return_type))] ^^^^^^^^^^^^^ File "/Users/ruifeng.zheng/Dev/spark/python/lib/pyspark.zip/pyspark/worker.py", line 483, in wrapped result, return_type, _assign_cols_by_name, truncate_return_schema=False ^^^^^^ UnboundLocalError: cannot access local variable 'result' where it is not associated with a value at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:523) at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:117) at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:479) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:601) at scala.collection.Iterator$$anon$9.hasNext(Iterator.scala:583) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:50) at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:896) ... ``` After this PR, the error happens before execution, which is consistent with Spark Classic, and much clear ``` PySparkValueError: [INVALID_PANDAS_UDF] Invalid function: the function in groupby.applyInArrow must take either one argument (data) or two arguments (key, data). ``` ### Does this PR introduce _any_ user-facing change? yes, error message changes ### How was this patch tested? added tests ### Was this patch authored or co-authored using generative AI tooling? no -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: [email protected] For queries about this service, please contact Infrastructure at: [email protected] --------------------------------------------------------------------- To unsubscribe, e-mail: [email protected] For additional commands, e-mail: [email protected]
