cloud-fan commented on code in PR #47233:
URL: https://github.com/apache/spark/pull/47233#discussion_r1765010920


##########
sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala:
##########
@@ -1654,6 +1655,43 @@ class Dataset[T] private[sql](
     new MergeIntoWriterImpl[T](table, this, condition)
   }
 
+  /**
+   * Update rows in a table.
+   *
+   * Scala Example:
+   * {{{
+   *   spark.table("source")
+   *    .update(Map("salary" -> lit(200)))
+   *    .execute()
+   * }}}
+   * @param assignments A Map of column names to Column expressions 
representing the updates
+   *     to be applied.
+   * @group basic
+   * @since 4.0.0
+   */
+  def update(assignments: Map[String, Column]): Unit = {
+    updateInternal(assignments)
+  }
+
+  /**
+   * Update rows in a table that match a condition.
+   *
+   * Scala Example:
+   * {{{
+   *   spark.table("source")
+   *    .update(Map("salary" -> lit(200)), $"salary" === 100)
+   *    .execute()
+   * }}}
+   * @param assignments A Map of column names to Column expressions 
representing the updates
+   *     to be applied.
+   * @param condition the update condition
+   * @group basic
+   * @since 4.0.0
+   */
+  def update(assignments: Map[String, Column], condition: Column): Unit = {
+    updateInternal(assignments, Some(condition))
+  }

Review Comment:
   The discussion here makes me doubt if it's right to put the update API in 
DataFrame. DataFrame means a query, not a table.
   
   Shall we consider adding the update API in the `Table` returned by 
`spark.catalog.getTable(...)`?



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to