marin-ma opened a new pull request, #53040:
URL: https://github.com/apache/spark/pull/53040

   <!--
   Thanks for sending a pull request!  Here are some tips for you:
     1. If this is your first time, please read our contributor guidelines: 
https://spark.apache.org/contributing.html
     2. Ensure you have added or run the appropriate tests for your PR: 
https://spark.apache.org/developer-tools.html
     3. If the PR is unfinished, add '[WIP]' in your PR title, e.g., 
'[WIP][SPARK-XXXX] Your PR title ...'.
     4. Be sure to keep the PR description updated to reflect all changes.
     5. Please write your PR title to summarize what this PR proposes.
     6. If possible, provide a concise example to reproduce the issue for a 
faster review.
     7. If you want to add a new configuration, please read the guideline first 
for naming configurations in
        
'core/src/main/scala/org/apache/spark/internal/config/ConfigEntry.scala'.
     8. If you want to add or modify an error type or message, please read the 
guideline first in
        'common/utils/src/main/resources/error/README.md'.
   -->
   
   ### What changes were proposed in this pull request?
   <!--
   Please clarify what changes you are proposing. The purpose of this section 
is to outline the changes and how this PR fixes the issue. 
   If possible, please consider writing useful notes for better and faster 
reviews in your PR. See the examples below.
     1. If you refactor some codes with changing classes, showing the class 
hierarchy will help reviewers.
     2. If you fix some SQL features, you can provide some references of other 
DBMSes.
     3. If there is design documentation, please add the link.
     4. If there is a discussion in the mailing list, please add the link.
   -->
   
   Currently, when Spark partitions the input files in a table scan, it first 
sorts the input splits, then adjacent splits are coalesced into a single 
partition. If the input split size distribution is uneven, some partitions will 
have only a few splits while others will have many.
   
   We observed that this file partitioning strategy can slow down the reading 
process if some tasks are reading more files than others, especially in 
Gluten’s native Parquet reader. To address this performance issue, we are 
proposing a new partitioning strategy that takes both partition size and file 
count into account and distributes the small files across different partitions 
to avoid skew.
   
   The strategy is designed with following steps:
   
   1. Get the number of output partition number from Spark's original logic 
FilePartition.getFilePartitions. If `spark.sql.files.maxPartitionNum` is set, 
use the smaller one as the output partition number.
   2. Assign small files starting from the smallest to the partitions with the 
minimum file count + total file size strategy
   3. Assign the remaining files from the largest into the partition with the 
minimum total file size + file count strategy
   The total size of small files can be configured using 
spark.gluten.sql.columnar.smallFileThreshold, which specifies the percentage of 
the total input file size represented by small files.
   
   
   ### Why are the changes needed?
   <!--
   Please clarify why the changes are needed. For instance,
     1. If you propose a new API, clarify the use case for a new API.
     2. If you fix a bug, you can clarify why it is a bug.
   -->
   
   As described in the previous section. End users and projects like Apache 
Gluten can benefit from this change. 
   
   ### Does this PR introduce _any_ user-facing change?
   <!--
   Note that it means *any* user-facing change including all aspects such as 
new features, bug fixes, or other behavior changes. Documentation-only updates 
are not considered user-facing changes.
   
   If yes, please clarify the previous behavior and the change this PR proposes 
- provide the console output, description and/or an example to show the 
behavior difference if possible.
   If possible, please also clarify if this is a user-facing change compared to 
the released Spark versions or within the unreleased branches such as master.
   If no, write 'No'.
   -->
   
   new configurations are added for this enhancement:
   
   - spark.sql.files.partitionStrategy
   - spark.sql.files.smallFileThreshold
   
   
   ### How was this patch tested?
   <!--
   If tests were added, say they were added here. Please make sure to add some 
test cases that check the changes thoroughly including negative and positive 
cases if possible.
   If it was tested in a way different from regular unit tests, please clarify 
how you tested step by step, ideally copy and paste-able, so that other 
reviewers can test and check, and descendants can verify in the future.
   If tests were not added, please describe why they were not added and/or why 
it was difficult to add.
   If benchmark tests were added, please run the benchmarks in GitHub Actions 
for the consistent environment, and the instructions could accord to: 
https://spark.apache.org/developer-tools.html#github-workflow-benchmarks.
   -->
   
   Unit test
   ### Was this patch authored or co-authored using generative AI tooling?
   <!--
   If generative AI tooling has been used in the process of authoring this 
patch, please include the
   phrase: 'Generated-by: ' followed by the name of the tool and its version.
   If no, write 'No'.
   Please refer to the [ASF Generative Tooling 
Guidance](https://www.apache.org/legal/generative-tooling.html) for details.
   -->
   
   No
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to