MonkeyCanCode opened a new pull request, #53078:
URL: https://github.com/apache/spark/pull/53078

   <!--
   Thanks for sending a pull request!  Here are some tips for you:
     1. If this is your first time, please read our contributor guidelines: 
https://spark.apache.org/contributing.html
     2. Ensure you have added or run the appropriate tests for your PR: 
https://spark.apache.org/developer-tools.html
     3. If the PR is unfinished, add '[WIP]' in your PR title, e.g., 
'[WIP][SPARK-XXXX] Your PR title ...'.
     4. Be sure to keep the PR description updated to reflect all changes.
     5. Please write your PR title to summarize what this PR proposes.
     6. If possible, provide a concise example to reproduce the issue for a 
faster review.
     7. If you want to add a new configuration, please read the guideline first 
for naming configurations in
        
'core/src/main/scala/org/apache/spark/internal/config/ConfigEntry.scala'.
     8. If you want to add or modify an error type or message, please read the 
guideline first in
        'common/utils/src/main/resources/error/README.md'.
   -->
   
   ### What changes were proposed in this pull request?
   To fix this, I added the following changes:
   1. [Apache Iceberg PR|https://github.com/apache/iceberg/pull/14590] to 
implement closable catalog
   2. Make `CatalogPlugin` interface extends `java.io.Closeable`
   3. Implement a `close()` method in `CatalogManager` that iterates through 
all registered catalogs and calls their `close()` method
   4. Make `SessionState` implements `Closeable` and calls 
`catalogManager.close()` from its `close()` method.
   5. Invoke `session.sessionState.close()` from `SessionHolder.close()` when a 
Spark Connect session is stopped
   
   Above changes create a clean lifecycle for catalogs when a session ended, a 
`close()` call is propagated down the chain which allow each catalog to release 
its resources.
   
   
   ### Why are the changes needed?
   Spark Connect server is leaking `SparkSession` objects each time a client 
connects and disconnects when dealing with Apache Iceberg ([Apache Iceberg 
PR|https://github.com/apache/iceberg/pull/14590]). 
   
   The `SessionHolder.close()` method in Spark Connect is responsible for 
cleaning up a session. It does perform some cleanup such as artifacts and 
streaming queries but it doesn't perform cleanup on the main `SessionState`. 
This is where the `CatalogManager` lives which holds reference to `RESTCatalog` 
and `S3FileIO`. Since the `SessionState` is never closed, these `Closeable` 
catalogs are never closed and their threads leak.
   
   
   ### Does this PR introduce _any_ user-facing change?
   N/A
   
   
   ### How was this patch tested?
   I have a local setup which can easily reproduce this issue. Here is setup 
details:
   
   REST catalog: Apache Polaris (created the basic polaris entities via getting 
start example)
   Spark Connect server:
   1. public released Spark distribution to show this issue is there and we 
have leaks
   2. local build with changes in this PR
   Spark Connect client: install public released apache spark package via pip
   
   Testing config:
   1. To make the testing easy, I set 
`spark.connect.session.manager.defaultSessionTimeout` from default `60m` to `1m`
   
   Testing:
   
   1. Check heap dump from spark UI for instance of 
`org.apache.spark.sql.classic.SparkSession` and 
`org.apache.spark.sql.internal.SessionState`
   2. Make a connection to an Iceberg REST catalog and perform `close()` on 
spark session implicitly:
   ```
   import uuid
   from pyspark.sql import SparkSession
   
   USER_CLIENT_ID = "xxxxx"
   USER_CLIENT_SECRET = "xxxxx"
   
   # Use `create` with defined `session_id` to ensure we will be getting a new 
session
   session_id = str(uuid.uuid4())
   spark = (
       SparkSession.builder
       .appName("Iceberg REST Catalog Quickstart")
       .remote(f"sc://localhost/;session_id={session_id}")
       .config("spark.sql.extensions", 
"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions")
       .config("spark.sql.catalog.quickstart_catalog", 
"org.apache.iceberg.spark.SparkCatalog")
       .config("spark.sql.catalog.quickstart_catalog.catalog-impl", 
"org.apache.iceberg.rest.RESTCatalog")
       .config("spark.sql.catalog.quickstart_catalog.uri", 
"http://localhost:8181/api/catalog";)
       .config("spark.sql.catalog.quickstart_catalog.warehouse", 
"quickstart_catalog")
       
.config("spark.sql.catalog.quickstart_catalog.header.X-Iceberg-Access-Delegation",
 "vended-credentials")
       .config("spark.sql.catalog.quickstart_catalog.credential", 
f"{USER_CLIENT_ID}:{USER_CLIENT_SECRET}")
       .config("spark.sql.catalog.quickstart_catalog.scope", 
"PRINCIPAL_ROLE:ALL")
       .config("spark.sql.catalog.quickstart_catalog.token-refresh-enabled", 
"true")
       .config("spark.sql.catalog.quickstart_catalog.client.region", 
"us-west-2")
       .create()
   )
   
   # Setup basic namespace and perform a read/write:
   spark.sql("USE quickstart_catalog").show()
   spark.sql("CREATE NAMESPACE IF NOT EXISTS quickstart_namespace").show()
   spark.sql("CREATE NAMESPACE IF NOT EXISTS 
quickstart_namespace.schema").show()
   spark.sql("USE NAMESPACE quickstart_namespace.schema").show()
   spark.sql("CREATE TABLE IF NOT EXISTS quickstart_table (id BIGINT, data 
STRING) USING ICEBERG").show()
   spark.sql("INSERT INTO quickstart_table values (1, 'a')").show()
   spark.sql("SELECT * FROM quickstart_table").show()
   
   # Stop the connection
   spark.stop()
   ```
   3. Check heap dump from spark UI for instance of 
`org.apache.spark.sql.classic.SparkSession` and 
`org.apache.spark.sql.internal.SessionState` again and noticed resources are 
not getting cleanup
   4. To make it more obvious, spin up 300 sessions and let the cleaner context 
stop them (with overwrite cleaning interval to 1m):
   ```
   for _ in range (300):
       session_id = str(uuid.uuid4())
       spark = (
           SparkSession.builder
           .appName("Iceberg REST Catalog Quickstart")
           .remote(f"sc://localhost/;session_id={session_id}")
           .config("spark.sql.extensions", 
"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions")
           .config("spark.sql.catalog.quickstart_catalog", 
"org.apache.iceberg.spark.SparkCatalog")
           .config("spark.sql.catalog.quickstart_catalog.catalog-impl", 
"org.apache.iceberg.rest.RESTCatalog")
           .config("spark.sql.catalog.quickstart_catalog.uri", 
"http://localhost:8181/api/catalog";)
           .config("spark.sql.catalog.quickstart_catalog.warehouse", 
"quickstart_catalog")
           
.config("spark.sql.catalog.quickstart_catalog.header.X-Iceberg-Access-Delegation",
 "vended-credentials")
           .config("spark.sql.catalog.quickstart_catalog.credential", 
f"{USER_CLIENT_ID}:{USER_CLIENT_SECRET}")
           .config("spark.sql.catalog.quickstart_catalog.scope", 
"PRINCIPAL_ROLE:ALL")
           
.config("spark.sql.catalog.quickstart_catalog.token-refresh-enabled", "true")
           .config("spark.sql.catalog.quickstart_catalog.client.region", 
"us-west-2")
           .create()
       )
       spark.sql("USE quickstart_catalog").show()
       spark.sql("USE NAMESPACE quickstart_namespace.schema").show()
       spark.sql("SELECT * FROM quickstart_table").show()
   ```
   6. Wait for 2-3 mins (the cleaning should start happen after 1m but it may 
take an extra 20-30 seconds for the cleaning to complete) then check heap dump 
from spark UI for instance of `org.apache.spark.sql.classic.SparkSession` and 
`org.apache.spark.sql.internal.SessionState` again. We will noticed the 
instances of these classes (along with many others) are not getting cleanup 
with current code. Also, heap usage will stay high and not able to garbage 
collected.
   7. Now to test the fixed, get a local build of iceberg spark runtime jar 
from the PR above and a local build of apache spark from this PR, and repeat 
the same tests listed above. This time, we will see resources getting cleanup 
properly and heap usage decreased after cleanup.
   
   
   
   ### Was this patch authored or co-authored using generative AI tooling?
   No


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to