dtenedor commented on code in PR #52883:
URL: https://github.com/apache/spark/pull/52883#discussion_r2579183245


##########
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/tuplesketchesAggregates.scala:
##########
@@ -0,0 +1,843 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.catalyst.expressions.aggregate
+
+import org.apache.datasketches.tuple.{Intersection, Sketch, Summary, Union, 
UpdatableSketch, UpdatableSketchBuilder, UpdatableSummary}
+
+import org.apache.spark.SparkUnsupportedOperationException
+import org.apache.spark.sql.catalyst.InternalRow
+import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, 
Expression, ExpressionDescription, Literal}
+import 
org.apache.spark.sql.catalyst.expressions.aggregate.TypedImperativeAggregate
+import org.apache.spark.sql.catalyst.trees.{QuaternaryLike, TernaryLike}
+import org.apache.spark.sql.catalyst.util.{ArrayData, CollationFactory, 
ThetaSketchUtils}
+import org.apache.spark.sql.errors.QueryExecutionErrors
+import org.apache.spark.sql.internal.types.StringTypeWithCollation
+import org.apache.spark.sql.types.{AbstractDataType, ArrayType, BinaryType, 
DataType, DoubleType, FloatType, IntegerType, LongType, StringType, StructType}
+import org.apache.spark.unsafe.types.UTF8String
+
+sealed trait TupleSketchState {
+  def serialize(): Array[Byte]
+  def eval(): Array[Byte]
+}
+case class UpdatableTupleSketchBuffer[U, S <: UpdatableSummary[U]](sketch: 
UpdatableSketch[U, S])
+    extends TupleSketchState {
+  override def serialize(): Array[Byte] = sketch.compact.toByteArray
+  override def eval(): Array[Byte] = sketch.compact.toByteArray
+}
+case class UnionTupleAggregationBuffer[S <: Summary](union: Union[S]) extends 
TupleSketchState {
+  override def serialize(): Array[Byte] = union.getResult.toByteArray
+  override def eval(): Array[Byte] = union.getResult.toByteArray
+}
+case class IntersectionTupleAggregationBuffer[S <: Summary](intersection: 
Intersection[S])
+    extends TupleSketchState {
+  override def serialize(): Array[Byte] = intersection.getResult.toByteArray
+  override def eval(): Array[Byte] = intersection.getResult.toByteArray
+}
+case class FinalizedTupleSketch[S <: Summary](sketch: Sketch[S]) extends 
TupleSketchState {
+  override def serialize(): Array[Byte] = sketch.toByteArray
+  override def eval(): Array[Byte] = sketch.toByteArray
+}
+
+/**
+ * The TupleSketchAgg function utilizes a Datasketches TupleSketch instance to 
count a
+ * probabilistic approximation of the number of unique values in a given 
column with associated
+ * summary values, and outputs the binary representation of the TupleSketch.
+ *
+ * See [[https://datasketches.apache.org/docs/Tuple/TupleSketches.html]] for 
more information.
+ *
+ * @param child
+ *   child expression (struct with key and summary value) against which unique 
counting will occur
+ * @param lgNomEntriesExpr
+ *   the log-base-2 of nomEntries decides the number of buckets for the sketch
+ * @param summaryType
+ *   the type of summary (double, integer, string)

Review Comment:
   Yes, this makes sense.
   * Let's put the summary data type as a suffix in the function name itself, 
like your example. This mirrors how the Java API works [1] and how BigQuery 
works [2] and is consistent with the other approximate sketch based functions 
we've added in Spark so far. If you prefer, we can just start with the 
`*_double` Tuple sketch functions in this PR and handle the other summary types 
in other follow-up PR(s).
   * We don't need to worry about specifying the data type of the accumulated 
keys, since the Datasketches library will just compute a 64-bit hash of each 
key and it will work.
   * We can allow the arguments to be provided either positionally or by name. 
Supporting named arguments sounds like a good idea here since we are adding 
many different arguments now.
   
   [1] https://datasketches.apache.org/docs/Tuple/TupleJavaExample.html
   
   [2] https://github.com/apache/datasketches-bigquery/tree/main/tuple



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to