Yicong-Huang commented on code in PR #54125:
URL: https://github.com/apache/spark/pull/54125#discussion_r2762155196


##########
python/pyspark/sql/pandas/serializers.py:
##########
@@ -631,170 +517,78 @@ def __init__(
             arrow_cast,
         )
         self._assign_cols_by_name = assign_cols_by_name
+        self._ignore_unexpected_complex_type_values = 
ignore_unexpected_complex_type_values
+        self._error_class = error_class
 
-    def _create_struct_array(
-        self,
-        df: "pd.DataFrame",
-        return_type: StructType,
-        *,
-        prefers_large_types: bool = False,
-    ):
-        """
-        Create an Arrow StructArray from the given pandas.DataFrame and Spark 
StructType.
-
-        Parameters
-        ----------
-        df : pandas.DataFrame
-            A pandas DataFrame
-        return_type : StructType
-            The Spark return type (StructType) to use
-        prefers_large_types : bool, optional
-            Whether to prefer large Arrow types (e.g., large_string instead of 
string).
-
-        Returns
-        -------
-        pyarrow.Array
-        """
-        import pyarrow as pa
-
-        # Derive arrow_struct_type from return_type
-        arrow_struct_type = to_arrow_type(
-            return_type, timezone=self._timezone, 
prefers_large_types=prefers_large_types
-        )
-
-        if len(df.columns) == 0:
-            return pa.array([{}] * len(df), arrow_struct_type)
-        # Assign result columns by schema name if user labeled with strings
-        if self._assign_cols_by_name and any(isinstance(name, str) for name in 
df.columns):
-            struct_arrs = [
-                self._create_array(
-                    df[spark_field.name],
-                    spark_field.dataType,
-                    arrow_cast=self._arrow_cast,
-                    prefers_large_types=prefers_large_types,
-                )
-                for spark_field in return_type
-            ]
-        # Assign result columns by position
-        else:
-            struct_arrs = [
-                # the selected series has name '1', so we rename it to 
spark_field.name
-                # as the name is used by _create_array to provide a meaningful 
error message
-                self._create_array(
-                    df[df.columns[i]].rename(spark_field.name),
-                    spark_field.dataType,
-                    arrow_cast=self._arrow_cast,
-                    prefers_large_types=prefers_large_types,
-                )
-                for i, spark_field in enumerate(return_type)
-            ]
-
-        return pa.StructArray.from_arrays(struct_arrs, 
fields=list(arrow_struct_type))
-
-    def _create_batch(
-        self, series, *, arrow_cast=False, prefers_large_types=False, 
struct_in_pandas="dict"
-    ):
+    def dump_stream(self, iterator, stream):
         """
-        Create an Arrow record batch from the given pandas.Series, 
pandas.DataFrame,
-        or list of Series/DataFrame, with optional Spark type.
-
-        Parameters
-        ----------
-        series : pandas.Series or pandas.DataFrame or list
-            A single series or dataframe, list of series or dataframe,
-            or list of (series or dataframe, spark_type) tuples.
-        arrow_cast : bool, optional
-            If True, use Arrow's cast method for type conversion.
-        prefers_large_types : bool, optional
-            Whether to prefer large Arrow types (e.g., large_string instead of 
string).
-        struct_in_pandas : str, optional
-            How to represent struct types in pandas: "dict" or "row".
-            Default is "dict".
-
-        Returns
-        -------
-        pyarrow.RecordBatch
-            Arrow RecordBatch
+        Override because Pandas UDFs require a START_ARROW_STREAM before the 
Arrow stream is sent.
+        This should be sent after creating the first record batch so in case 
of an error, it can
+        be sent back to the JVM before the Arrow stream starts.
         """
         import pandas as pd
         import pyarrow as pa
 
-        # Normalize input to list of (data, spark_type) tuples
-        # Handle: single series, (series, type) tuple, or list of tuples
-        if not isinstance(series, (list, tuple)) or (
-            len(series) == 2 and isinstance(series[1], DataType)
-        ):
-            series = [series]
-        # Ensure each element is a (data, spark_type) tuple
-        series = [(s, None) if not isinstance(s, (list, tuple)) else s for s 
in series]
-
-        arrs = []
-        for s, spark_type in series:
-            # Convert spark_type to arrow_type for type checking (similar to 
master branch)
-            arrow_type = (
-                to_arrow_type(
-                    spark_type, timezone=self._timezone, 
prefers_large_types=prefers_large_types
+        def create_batch(series_with_types):
+            """Create batch from list of (data, spark_type) tuples."""
+            arrs = []
+            for s, spark_type in series_with_types:
+                arrow_type = (
+                    to_arrow_type(
+                        spark_type,
+                        timezone=self._timezone,
+                        prefers_large_types=self._prefers_large_types,
+                    )
+                    if spark_type is not None

Review Comment:
   There is no case now! all inputs are valid spark type. I initially did not 
want to make this change in this PR (just want to move the method out). I have 
now updated it.



##########
python/pyspark/sql/pandas/serializers.py:
##########
@@ -453,121 +432,26 @@ def arrow_to_pandas(
             ndarray_as_list=ndarray_as_list,
         )
 
-    def _create_array(self, series, spark_type, *, arrow_cast=False, 
prefers_large_types=False):
+    def dump_stream(self, iterator, stream):
         """
-        Create an Arrow Array from the given pandas.Series and Spark type.
-
-        Parameters
-        ----------
-        series : pandas.Series
-            A single series
-        spark_type : DataType, optional
-            The Spark return type. For UDF return types, this should always be 
provided
-            and should never be None. If None, pyarrow's inferred type will be 
used
-            (for backward compatibility).
-        arrow_cast : bool, optional
-            Whether to apply Arrow casting when the user-specified return type 
mismatches the
-            actual return values.
-        prefers_large_types : bool, optional
-            Whether to prefer large Arrow types (e.g., large_string instead of 
string).
-
-        Returns
-        -------
-        pyarrow.Array
+        Make ArrowRecordBatches from Pandas Series and serialize.
+        Each element in iterator is an iterable of (series, spark_type) tuples.
         """
-        import pyarrow as pa
-        import pandas as pd
-
-        if isinstance(series.dtype, pd.CategoricalDtype):
-            series = series.astype(series.dtypes.categories.dtype)
-
-        # Derive arrow_type from spark_type
-        arrow_type = (
-            to_arrow_type(
-                spark_type, timezone=self._timezone, 
prefers_large_types=prefers_large_types
-            )
-            if spark_type is not None
-            else None
-        )
+        from pyspark.sql.types import StructType, StructField
 
-        if spark_type is not None:
-            conv = _create_converter_from_pandas(
-                spark_type,
+        def create_batch(series_tuples):

Review Comment:
   added!



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to