Github user srowen commented on a diff in the pull request:

    https://github.com/apache/spark/pull/6761#discussion_r32474655
  
    --- Diff: 
mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala ---
    @@ -113,6 +106,55 @@ class NaiveBayesModel private[mllib] (
         }
       }
     
    +  def predictProbabilities(testData: RDD[Vector]): RDD[Map[Double, 
Double]] = {
    +    val bcModel = testData.context.broadcast(this)
    +    testData.mapPartitions { iter =>
    +      val model = bcModel.value
    +      iter.map(model.predictProbabilities)
    +    }
    +  }
    +
    +  def predictProbabilities(testData: Vector): Map[Double, Double] = {
    +    modelType match {
    +      case Multinomial =>
    +        val prob = multinomialCalculation(testData)
    +        posteriorProbabilities(prob)
    +      case Bernoulli =>
    +        val prob = bernoulliCalculation(testData)
    +        posteriorProbabilities(prob)
    +      case _ =>
    +        // This should never happen.
    +        throw new UnknownError(s"Invalid modelType: $modelType.")
    +    }
    +  }
    +
    +  protected[classification] def multinomialCalculation(testData: Vector): 
DenseVector = {
    +    val prob = thetaMatrix.multiply(testData)
    +    BLAS.axpy(1.0, piVector, prob)
    +    prob
    +  }
    +
    +  protected[classification] def bernoulliCalculation(testData: Vector): 
DenseVector = {
    +    testData.foreachActive { (index, value) =>
    +      if (value != 0.0 && value != 1.0) {
    +        throw new SparkException(
    +          s"Bernoulli naive Bayes requires 0 or 1 feature values but found 
$testData.")
    +      }
    +    }
    +    val prob = thetaMinusNegTheta.get.multiply(testData)
    +    BLAS.axpy(1.0, piVector, prob)
    +    BLAS.axpy(1.0, negThetaSum.get, prob)
    +    prob
    +  }
    +
    +  protected[classification] def posteriorProbabilities(prob: DenseVector): 
Map[Double, Double] = {
    +    val maxLogs = max(prob.toBreeze)
    +    val minLogs = min(prob.toBreeze)
    +    val normalized = prob.toArray.map(e => (e - minLogs) / (maxLogs - 
minLogs))
    --- End diff --
    
    This is on the right path except that the 'normalization' upfront here 
isn't valid. Just drop that. I meant you have to subtract the sum of the log of 
probabilities rather than of log-probabilities, but then I think the easiest 
thing is just to go straight back to probabilities, then normalize. This 
introduces some issues with very small probabilities, but I assume the API must 
return probabilities and not log-probabilities, so this is going to be an issue 
no matter what. I think this might be about right:
    
    ```
    val probabilities = prob.toArray.map(math.exp)
    val probSum = probabilities.sum
    labels.zip(probabilities.map(_ / probSum)).toMap
    ```


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to