Github user holdenk commented on the pull request:

    https://github.com/apache/spark/pull/6386#issuecomment-112265729
  
    So from running with a slightly larger scaling factor than I was initially 
it seems all the approaches are pretty similar in terms of time usage.
    
    origin:
    glm-regression, glm-regression --num-trials=10 --inter-trial-wait=3 
--num-partitions=6 --random-seed=5 --num-examples=50000 --num-features=10000 
--num-iterations=20 --step-size=0.001 --reg-type=l2 --reg-param=0.1 
--optimizer=lbfgs --intercept=0.0 --epsilon=0.1 --loss=l2
    Training time: 4.5985, 0.175, 4.259, 4.452, 4.579
    Test time: 0.1255, 0.007, 0.117, 0.125, 0.117
    Training Set Metric: 33.2738700623, 0.133, 33.0214743257, 33.4757304367, 
33.2006471123
    Test Set Metric: 33.1470085163, 0.274, 32.8030691787, 33.372759872, 
33.0449774996
    glm-regression, glm-regression --num-trials=10 --inter-trial-wait=3 
--num-partitions=6 --random-seed=5 --num-examples=50000 --num-features=10000 
--num-iterations=20 --step-size=0.001 --reg-type=l2 --reg-param=0.1 
--optimizer=lbfgs --intercept=0.0 --epsilon=0.1 --loss=elastic-net
    Training time: 4.5985, 0.175, 4.259, 4.452, 4.579
    Test time: 0.1255, 0.007, 0.117, 0.125, 0.117
    Training Set Metric: 33.2738700623, 0.133, 33.0214743257, 33.4757304367, 
33.2006471123
    Test Set Metric: 33.1470085163, 0.274, 32.8030691787, 33.372759872, 
33.0449774996
    
    current pr (rt through dataframes):
    
    glm-regression, glm-regression --num-trials=10 --inter-trial-wait=3 
--num-partitions=6 --random-seed=5 --num-examples=50000 --num-features=10000 
--num-iterations=20 --step-size=0.001 --reg-type=l2 --reg-param=0.1 
--optimizer=lbfgs --intercept=0.0 --epsilon=0.1 --loss=l2
    Training time: 4.382, 0.486, 3.937, 5.056, 3.937
    Test time: 0.1255, 0.012, 0.114, 0.124, 0.115
    Training Set Metric: 33.2738700623, 0.133, 33.0214743257, 33.4757304367, 
33.2006471123
    Test Set Metric: 33.1470085163, 0.274, 32.8030691787, 33.372759872, 
33.0449774996
    glm-regression, glm-regression --num-trials=10 --inter-trial-wait=3 
--num-partitions=6 --random-seed=5 --num-examples=50000 --num-features=10000 
--num-iterations=20 --step-size=0.001 --reg-type=l2 --reg-param=0.1 
--optimizer=lbfgs --intercept=0.0 --epsilon=0.1 --loss=elastic-net
    Training time: 4.382, 0.486, 3.937, 5.056, 3.937
    Test time: 0.1255, 0.012, 0.114, 0.124, 0.115
    Training Set Metric: 33.2738700623, 0.133, 33.0214743257, 33.4757304367, 
33.2006471123
    Test Set Metric: 33.1470085163, 0.274, 32.8030691787, 33.372759872, 
33.0449774996
    
    pr without the rt through data frames:
    
    glm-regression, glm-regression --num-trials=10 --inter-trial-wait=3 
--num-partitions=6 --random-seed=5 --num-examples=50000 --num-features=10000 
--num-iterations=20 --step-size=0.001 --reg-type=l2 --reg-param=0.1 
--optimizer=lbfgs --intercept=0.0 --epsilon=0.1 --loss=l2
    Training time: 4.3305, 0.374, 4.049, 5.034, 4.049
    Test time: 0.1225, 0.011, 0.119, 0.149, 0.119
    Training Set Metric: 33.2738700623, 0.133, 33.0214743257, 33.4757304367, 
33.2006471123
    Test Set Metric: 33.1470085163, 0.274, 32.8030691787, 33.372759872, 
33.0449774996
    glm-regression, glm-regression --num-trials=10 --inter-trial-wait=3 
--num-partitions=6 --random-seed=5 --num-examples=50000 --num-features=10000 
--num-iterations=20 --step-size=0.001 --reg-type=l2 --reg-param=0.1 
--optimizer=lbfgs --intercept=0.0 --epsilon=0.1 --loss=elastic-net
    Training time: 4.3305, 0.374, 4.049, 5.034, 4.049
    Test time: 0.1225, 0.011, 0.119, 0.149, 0.119
    Training Set Metric: 33.2738700623, 0.133, 33.0214743257, 33.4757304367, 
33.2006471123
    Test Set Metric: 33.1470085163, 0.274, 32.8030691787, 33.372759872, 
33.0449774996


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to