Github user andrewor14 commented on a diff in the pull request:

    https://github.com/apache/spark/pull/5563#discussion_r33737178
  
    --- Diff: 
core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerUtils.scala
 ---
    @@ -86,10 +88,138 @@ private[mesos] trait MesosSchedulerUtils extends 
Logging {
       /**
        * Get the amount of resources for the specified type from the resource 
list
        */
    -  protected def getResource(res: List[Resource], name: String): Double = {
    +  protected def getResource(res: JList[Resource], name: String): Double = {
         for (r <- res if r.getName == name) {
           return r.getScalar.getValue
         }
         0.0
       }
    +
    +  /** Helper method to get the key,value-set pair for a Mesos Attribute 
protobuf */
    +  def getAttribute(attr: Attribute): (String, Set[String]) =
    +    (attr.getName, attr.getText.getValue.split(',').toSet)
    +
    +  /** Build a Mesos resource protobuf object */
    +  def createResource(resourceName: String, quantity: Double): 
Protos.Resource = {
    +    Resource.newBuilder()
    +      .setName(resourceName)
    +      .setType(Value.Type.SCALAR)
    +      .setScalar(Value.Scalar.newBuilder().setValue(quantity).build())
    +      .build()
    +  }
    +
    +  /**
    +   * Converts the attributes from the resource offer into a Map of name -> 
Attribute Value
    +   * The attribute values are the mesos attribute types and they are
    +   * @param offerAttributes
    +   * @return
    +   */
    +  def toAttributeMap(offerAttributes: JList[Attribute]): Map[String, 
GeneratedMessage] =
    +    offerAttributes.map(attr => {
    +      val attrValue = attr.getType match {
    +        case Value.Type.SCALAR => attr.getScalar
    +        case Value.Type.RANGES => attr.getRanges
    +        case Value.Type.SET => attr.getSet
    +        case Value.Type.TEXT => attr.getText
    +      }
    +      (attr.getName, attrValue)
    +    }).toMap
    +
    +  /**
    +   * Match the requirements (if any) to the offer attributes.
    +   * if attribute requirements are not specified - return true
    +   * else if attribute is defined and no values are given, simple 
attribute presence is preformed
    +   * else if attribute name and value is specified, subset match is 
performed on slave attributes
    +   */
    +  def matchesAttributeRequirements(
    +      slaveOfferConstraints: Map[String, Set[String]],
    +      offerAttributes: Map[String, GeneratedMessage]): Boolean =
    +    slaveOfferConstraints.forall {
    +      // offer has the required attribute and subsumes the required values 
for that attribute
    +      case (name, requiredValues) =>
    +        offerAttributes.get(name) match {
    +          case None => false
    +          case Some(_) if requiredValues.isEmpty => true // empty value 
matches presence
    +          case Some(scalarValue: Value.Scalar) =>
    +            // check if provided values is less than equal to the offered 
values
    +            requiredValues.map(_.toDouble).exists(_ <= 
scalarValue.getValue)
    +          case Some(rangeValue: Value.Range) =>
    +            val offerRange = rangeValue.getBegin to rangeValue.getEnd
    +            // Check if there is some required value that is between the 
ranges specified
    +            // Note: We only support the ability to specify discrete 
values, in the future
    +            // we may expand it to subsume ranges specified with a XX..YY 
value or something
    +            // similar to that.
    +            requiredValues.map(_.toLong).exists(offerRange.contains(_))
    +          case Some(offeredValue: Value.Set) =>
    +            // check if the specified required values is a subset of 
offered set
    +            requiredValues.subsetOf(offeredValue.getItemList.toSet)
    +          case Some(textValue: Value.Text) =>
    +            // check if the specified value is equal, if multiple values 
are specified
    +            // we succeed if any of them match.
    +            requiredValues.contains(textValue.getValue)
    +        }
    +  }
    +
    +  /**
    +   * Parses the attributes constraints provided to spark and build a 
matching data struct:
    +   *  Map[<attribute-name>, Set[values-to-match]]
    +   *  The constraints are specified as ';' separated key-value pairs where 
keys and values
    +   *  are separated by ':'. The ':' implies equality (for singular values) 
and "is one of" for
    +   *  multiple values (comma separated). For example:
    +   *  {{{
    +   *  parseConstraintString("tachyon:true;zone:us-east-1a,us-east-1b")
    +   *  // would result in
    +   *  <code>
    +   *  Map(
    +   *    "tachyon" -> Set("true"),
    +   *    "zone":   -> Set("us-east-1a", "us-east-1b")
    +   *  )
    +   *  }}}
    +   *
    +   *  Mesos documentation: 
http://mesos.apache.org/documentation/attributes-resources/
    +   *                       
https://github.com/apache/mesos/blob/master/src/common/values.cpp
    +   *                       
https://github.com/apache/mesos/blob/master/src/common/attributes.cpp
    +   *
    +   * @param constraintsVal constaints string consisting of ';' separated 
key-value pairs (separated
    +   *                       by ':')
    +   * @return  Map of constraints to match resources offers.
    +   */
    +  def parseConstraintString(constraintsVal: String): Map[String, 
Set[String]] = {
    +    /*
    +      Based on mesos docs:
    +      attributes : attribute ( ";" attribute )*
    +      attribute : labelString ":" ( labelString | "," )+
    +      labelString : [a-zA-Z0-9_/.-]
    +    */
    +    val splitter = 
Splitter.on(';').trimResults().withKeyValueSeparator(':')
    +    // kv splitter
    +    if (constraintsVal.isEmpty) {
    +      Map()
    +    } else {
    +      try {
    +        Map() ++ mapAsScalaMap(splitter.split(constraintsVal)).map {
    +          case (k, v) =>
    +            if (v == null || v.isEmpty) {
    +              (k, Set[String]())
    +            } else {
    +              (k, v.split(',').toSet)
    +            }
    +        }
    +      } catch {
    +        case e: Throwable =>
    +          throw new IllegalArgumentException(s"Bad constraint string: 
$constraintsVal", e)
    +      }
    +    }
    +  }
    +
    +  // These defaults copied from YARN
    +  private val MEMORY_OVERHEAD_FRACTION = 0.10
    +  private val MEMORY_OVERHEAD_MINIMUM = 384
    +
    +  def calculateTotalMemory(sc: SparkContext): Int = {
    --- End diff --
    
    could you add a quick java doc while you're at it? Something like
    ```
    Compute the amount of memory to allocate to each executor,
    taking into account container overheads.
    ```


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to