Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/6756#discussion_r34096466
--- Diff: python/pyspark/ml/clustering.py ---
@@ -0,0 +1,202 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements. See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from pyspark.ml.util import keyword_only
+from pyspark.ml.wrapper import JavaEstimator, JavaModel
+from pyspark.ml.param.shared import *
+from pyspark.mllib.common import inherit_doc
+from pyspark.mllib.linalg import _convert_to_vector
+
+__all__ = ['KMeans', 'KMeansModel']
+
+
+class KMeansModel(JavaModel):
+ """
+ Model fitted by KMeans.
+ """
+
+ def clusterCenters(self):
+ """Get the cluster centers, represented as a list of NumPy
arrays."""
+ return [c.toArray() for c in self._call_java("clusterCenters")]
+
+
+@inherit_doc
+class KMeans(JavaEstimator, HasFeaturesCol, HasMaxIter, HasSeed):
+ """
+ K-means Clustering
+
+ >>> from pyspark.mllib.linalg import Vectors
+ >>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),),
+ ... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)]
+ >>> df = sqlContext.createDataFrame(data, ["features"])
+ >>> kmeans = KMeans().setK(2).setSeed(1).setFeaturesCol("features")
+ >>> model = kmeans.fit(df)
+ >>> centers = model.clusterCenters()
+ >>> len(centers)
+ 2
+ >>> transformed = model.transform(df)
+ >>> (transformed.columns)[0] == 'features'
+ True
+ >>> (transformed.columns)[1] == 'prediction'
+ True
+ >>> rows = sorted(transformed.collect(), key = lambda r: r[0])
+ >>> rows[0].prediction == rows[1].prediction
+ True
+ >>> rows[2].prediction == rows[3].prediction
+ True
+ >>> kmeans.setParams("features")
+ Traceback (most recent call last):
+ ...
+ TypeError: Method setParams forces keyword arguments.
+ """
+
+ @keyword_only
+ def __init__(self, k=2, maxIter=20, runs=1, epsilon=1e-4,
initMode="k-means||", initStep=5):
+ super(KMeans, self).__init__()
+ self._java_obj =
self._new_java_obj("org.apache.spark.ml.clustering.KMeans", self.uid)
+ self.k = Param(self, "k", "number of clusters to create")
+ self.epsilon = Param(self, "epsilon",
+ "distance threshold within which " +
+ "we've consider centers to have converged")
+ self.runs = Param(self, "runs", "number of runs of the algorithm
to execute in parallel")
+ self.seed = Param(self, "seed", "random seed")
+ self.initMode = Param(self, "initMode",
+ "the initialization algorithm. This can be
either \"random\" to " +
+ "choose random points as initial cluster
centers, or \"k-means||\" " +
+ "to use a parallel variant of k-means++")
+ self.initSteps = Param(self, "initSteps", "steps for k-means
initialization mode")
+ self._setDefault(k=2, maxIter=20, runs=1, epsilon=1e-4,
initMode="k-means||", initSteps=5)
+ kwargs = self.__init__._input_kwargs
+ self.setParams(**kwargs)
+
+ def _create_model(self, java_model):
+ return KMeansModel(java_model)
+
+ @keyword_only
+ def setParams(self, k=2, maxIter=20, runs=1, epsilon=1e-4,
initMode="k-means||", initSteps=5):
+ """
+ setParams(self, k=2, maxIter=20, runs=1, epsilon=1e-4,
initMode="k-means||", initSteps=5):
+
+ Sets params for KMeans.
+ """
+ kwargs = self.setParams._input_kwargs
+ return self._set(**kwargs)
+
+ def setK(self, value):
+ """
+ Sets the value of :py:attr:`k`.
+
+ >>> algo = KMeans().setK(10)
+ >>> algo.getK()
+ 10
+ """
+ self._paramMap[self.k] = value
+ return self
+
+ def getK(self):
+ """
+ Gets the value of `k`
+ """
+ return self.getOrDefault(self.k)
+
+ def setEpsilon(self, value):
+ """
+ Sets the value of :py:attr:`epsilon`.
+
+ >>> algo = KMeans().setEpsilon(1e-5)
+ >>> abs(algo.getEpsilon() - 1e-5) < 1e-5
+ True
+ """
+ self._paramMap[self.epsilon] = value
+ return self
+
+ def getEpsilon(self):
+ """
+ Gets the value of `epsilon`
+ """
+ return self.getOrDefault(self.epsilon)
+
+ def setRuns(self, value):
+ """
+ Sets the value of :py:attr:`runs`.
+
+ >>> algo = KMeans().setRuns(10)
+ >>> algo.getRuns()
+ 10
+ """
+ self._paramMap[self.runs] = value
+ return self
+
+ def getRuns(self):
+ """
+ Gets the value of `runs`
+ """
+ return self.getOrDefault(self.runs)
+
+ def setInitializationMode(self, value):
--- End diff --
For all of these params & getters/setters, please rename "initialization"
to "init"
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]