Github user vchekan commented on the pull request:

    https://github.com/apache/spark/pull/961#issuecomment-45125185
  
    Perhaps my initial interpretation of what lead to this exception was wrong. 
    When JobGenerator generates a job, it calls DStreamGraph, which calls 
output streams, which calls DStream.getOrCompute. 
    
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/dstream/DStream.scala#L290
    As you can see, "compute" wont be called if time is not right. For windowed 
DStream for example, only those matching window sliding period will be valid 
times and those not matching will be ignored. 
    But ReceiverInputDStream.receivedBlockInfo is updated only when "compute" 
is called.
    
https://github.com/apache/spark/blob/master/streaming/src/main/scala/org/apache/spark/streaming/dstream/ReceiverInputDStream.scala#L67
    Thus, receivedBlockInfo may have missing times when window DStream is used.
    
    Next, after graph.generateJobs, JobGenerator calls every 
getReceiverInputStreams getReceivedBlockInfo(). It does not check, is the time 
valid or not. And 
    @pwendell could you please advise, if the way I've fixed the bug is the 
right one, or it is better to check DStream.isTimeValid before calling receiver 
input stream's getReceivedBlockInfo?
    
    And btw, here is full stacktrace of the exception:
    java.util.NoSuchElementException: key not found: 1401754908000 ms
        at scala.collection.MapLike$class.default(MapLike.scala:228)
        at scala.collection.AbstractMap.default(Map.scala:58)
        at scala.collection.mutable.HashMap.apply(HashMap.scala:64)
        at 
org.apache.spark.streaming.dstream.ReceiverInputDStream.getReceivedBlockInfo(ReceiverInputDStream.scala:77)
        at 
org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:225)
        at 
org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:223)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
        at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
        at 
org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:223)
        at 
org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:165)
        at 
org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$start$1$$anon$1$$anonfun$receive$1.applyOrElse(JobGenerator.scala:76)
        at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
        at akka.actor.ActorCell.invoke(ActorCell.scala:456)
        at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
        at akka.dispatch.Mailbox.run(Mailbox.scala:219)
        at 
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
        at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
        at 
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
        at 
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
        at 
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to