Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/7388#discussion_r37099213
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/feature/CountVectorizer.scala ---
@@ -0,0 +1,196 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.ml.feature
+
+import scala.collection.mutable
+
+import org.apache.spark.annotation.Experimental
+import org.apache.spark.ml.param._
+import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
+import org.apache.spark.ml.util.{Identifiable, SchemaUtils}
+import org.apache.spark.ml.{Estimator, Model}
+import org.apache.spark.mllib.linalg.{VectorUDT, Vectors}
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.functions._
+import org.apache.spark.sql.types._
+import org.apache.spark.sql.DataFrame
+
+/**
+ * Params for [[CountVectorizer]] and [[CountVectorizerModel]].
+ */
+private[feature] trait CountVectorizerParams extends Params with
HasInputCol with HasOutputCol {
+
+ /**
+ * Max size of the vocabulary.
+ * CountVectorizer will build a vocabulary that only considers the top
+ * vocabSize terms ordered by term frequency across the corpus.
+ *
+ * Default: 10000
+ * @group param
+ */
+ val vocabSize: IntParam =
+ new IntParam(this, "vocabSize", "size of the vocabulary",
ParamValidators.gt(0))
+
+ /** @group getParam */
+ def getVocabSize: Int = $(vocabSize)
+
+ /**
+ * The minimum number of times a token must appear in the corpus to be
included in the vocabulary.
+ * Note that this is not the same as document frequency:
[[minTokenCount]] counts tokens including
+ * duplicates of terms, whereas document frequency counts unique terms.
Support for document
+ * frequency will be added in the future.
+ *
+ * Default: 1
+ * @group param
+ */
+ val minTokenCount: IntParam = new IntParam(this, "minTokenCount",
+ "minimum number of times a token must appear in the corpus to be
included in the vocabulary."
+ , ParamValidators.gtEq(1))
+
+ /** @group getParam */
+ def getMinTokenCount: Int = $(minTokenCount)
+
+ /** Validates and transforms the input schema. */
+ protected def validateAndTransformSchema(schema: StructType): StructType
= {
+ SchemaUtils.checkColumnType(schema, $(inputCol), new
ArrayType(StringType, true))
+ SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT)
+ }
+
+ /**
+ * Filter to ignore scarce words in a document. For each document, terms
with
+ * frequency (count) less than the given threshold are ignored.
+ * Default: 1
+ * @group param
+ */
+ val minTermFreq: IntParam = new IntParam(this, "minTermFreq",
+ "minimum frequency (count) filter used to neglect scarce words (>= 1).
For each document, " +
+ "terms with frequency less than the given threshold are ignored.",
ParamValidators.gtEq(1))
+ setDefault(minTermFreq -> 1)
+
+ /** @group getParam */
+ def getMinTermFreq: Int = $(minTermFreq)
+}
+
+/**
+ * :: Experimental ::
+ * Extracts a vocabulary from document collections and generates a
[[CountVectorizerModel]].
+ */
+@Experimental
+class CountVectorizer(override val uid: String)
+ extends Estimator[CountVectorizerModel] with CountVectorizerParams {
+
+ def this() = this(Identifiable.randomUID("cntVec"))
+
+ /** @group setParam */
+ def setInputCol(value: String): this.type = set(inputCol, value)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ /** @group setParam */
+ def setVocabSize(value: Int): this.type = set(vocabSize, value)
+
+ /** @group setParam */
+ def setMinTokenCount(value: Int): this.type = set(minTokenCount, value)
+
+ /** @group setParam */
+ def setMinTermFreq(value: Int): this.type = set(minTermFreq, value)
+
+ setDefault(vocabSize -> 10000, minTokenCount -> 1)
+
+ override def fit(dataset: DataFrame): CountVectorizerModel = {
+ transformSchema(dataset.schema, logging = true)
+ val minCnt = $(minTokenCount)
+ val vocSize = $(vocabSize)
+ val input = dataset.select($(inputCol)).map(_.getAs[Seq[String]](0))
+ val wordCounts: RDD[(String, Long)] = input
+ .flatMap { case (tokens) => tokens.map(_ -> 1L) }
+ .reduceByKey(_ + _)
+ .filter(_._2 >= minCnt)
+ wordCounts.cache()
+ val fullVocabSize = wordCounts.count()
+ val vocab: Array[String] = {
+ val tmpSortedWC: Array[(String, Long)] = if (fullVocabSize <=
vocSize) {
+ // Use all terms
+ wordCounts.collect().sortBy(-_._2)
+ } else {
+ // Sort terms to select vocab
+ wordCounts.sortBy(_._2, ascending = false).take(vocSize)
+ }
+ tmpSortedWC.map(_._1)
+ }
+
+ require(vocab.length > 0,
+ "The vocabulary size should be > 0. Lower minTokenCount as
necessary.")
+ copyValues(new CountVectorizerModel(uid, vocab).setParent(this))
+ }
+
+ override def transformSchema(schema: StructType): StructType = {
+ validateAndTransformSchema(schema)
+ }
+
+ override def copy(extra: ParamMap): CountVectorizer = defaultCopy(extra)
+}
+
+/**
+ * :: Experimental ::
+ * Converts a text document to a sparse vector of token counts.
+ * @param vocabulary An Array over terms. Only the terms in the vocabulary
will be counted.
+ */
+@Experimental
+class CountVectorizerModel(override val uid: String, val vocabulary:
Array[String])
+ extends Model[CountVectorizerModel] with CountVectorizerParams {
+
+ def this(vocabulary: Array[String]) = {
+ this(Identifiable.randomUID("cntVecModel"), vocabulary)
+ set(vocabSize, vocabulary.length)
+ }
+
+ /** @group setParam */
+ def setInputCol(value: String): this.type = set(inputCol, value)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ /** @group setParam */
+ def setMinTermFreq(value: Int): this.type = set(minTermFreq, value)
+
+ override def transform(dataset: DataFrame): DataFrame = {
+ val dict = vocabulary.zipWithIndex.toMap
--- End diff --
Hm, this is an issue multiple places in MLlib. I'll make a JIRA for it...
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]