Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/8184#discussion_r37246863
--- Diff: docs/ml-features.md ---
@@ -649,6 +649,70 @@ for expanded in polyDF.select("polyFeatures").take(3):
</div>
</div>
+## Discrete Cosine Transform (DCT)
+
+The [Discrete Cosine
Transform](https://en.wikipedia.org/wiki/Discrete_cosine_transform) transforms
a length $N$ real-valued sequence in the time domain into another length $N$
real-valued sequence in the frequency domain. A
[DCT](api/scala/index.html#org.apache.spark.ml.feature.DCT) class provides this
functionality, implementing the
[DCT-II](https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II) and
scaling the result by $1/\sqrt{2}$ such that the representing matrix for the
transform is unitary. No shift is applied to the transformed sequence (e.g. the
$0$th element of the transformed sequence is the $0$th DCT coefficient and
_not_ the $N/2$th).
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+import org.apache.spark.ml.feature.DCT
+import org.apache.spark.mllib.linalg.Vectors
+
+val data = Seq(
+ Vectors.dense(0.0, 1.0, -2.0, 3.0),
+ Vectors.dense(-1.0, 2.0, 4.0, -7.0),
+ Vectors.dense(14.0, -2.0, -5.0, 1.0))
+val df =
sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
+val DCTransform = new DCT()
+ .setInputCol("features")
+ .setOutputCol("featuresDCT")
+ .setInverse(false)
+val DCTdf = DCTransform.transform(df)
+DCTdf.select("featuresDCT").take(3).foreach(println)
+{% endhighlight %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% highlight java %}
+import com.google.common.collect.Lists;
+
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.ml.feature.DCT;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.VectorUDT;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.Row;
+import org.apache.spark.sql.RowFactory;
+import org.apache.spark.sql.SQLContext;
+import org.apache.spark.sql.types.Metadata;
+import org.apache.spark.sql.types.StructField;
+import org.apache.spark.sql.types.StructType;
+
+JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList(
--- End diff --
minor: `Lists.newArrayList` -> `Arrays.asList` (to remove Guava dependency)
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]