Github user feynmanliang commented on a diff in the pull request:
https://github.com/apache/spark/pull/8377#discussion_r37943772
--- Diff:
examples/src/main/java/org/apache/spark/examples/ml/JavaTrainValidationSplitExample.java
---
@@ -0,0 +1,106 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.ml;
+
+import java.util.List;
+
+import com.google.common.collect.Lists;
+
+import org.apache.spark.SparkConf;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.ml.evaluation.RegressionEvaluator;
+import org.apache.spark.ml.param.ParamMap;
+import org.apache.spark.ml.regression.LinearRegression;
+import org.apache.spark.ml.tuning.*;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.Row;
+import org.apache.spark.sql.SQLContext;
+
+/**
+ * A simple example demonstrating model selection using
TrainValidationSplit.
+ *
+ * The example is based on {@link
org.apache.spark.examples.ml.JavaSimpleParamsExample}
+ * using linear regression.
+ *
+ * Run with
+ * {{{
+ * bin/run-example ml.JavaTrainValidationSplitExample
+ * }}}
+ */
+public class JavaTrainValidationSplitExample {
+
+ public static void main(String[] args) {
+ SparkConf conf = new
SparkConf().setAppName("JavaTrainValidationSplitExample");
+ JavaSparkContext jsc = new JavaSparkContext(conf);
+ SQLContext jsql = new SQLContext(jsc);
+
+ List<LabeledPoint> localTraining = Lists.newArrayList(
+ new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
+ new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
+ new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
+ new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5)));
+
+ DataFrame training =
jsql.createDataFrame(jsc.parallelize(localTraining), LabeledPoint.class);
+
+ LinearRegression lr = new LinearRegression();
+
+ // In this case the estimator is simply the linear regression.
+ // A TrainValidationSplit requires an Estimator, a set of Estimator
ParamMaps, and an Evaluator.
+ TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
+ .setEstimator(lr)
+ .setEvaluator(new RegressionEvaluator());
+
+ // We use a ParamGridBuilder to construct a grid of parameters to
search over.
+ // TrainValidationSplit will try all combinations of values and
determine best model using
+ // the evaluator.
+ ParamMap[] paramGrid = new ParamGridBuilder()
+ .addGrid(lr.regParam(), new double[]{0.1, 0.01})
+ .addGrid(lr.fitIntercept())
+ .addGrid(lr.elasticNetParam(), new double[]{0.0, 0.5, 1.0})
+ .addGrid(lr.maxIter(), new int[]{10, 100})
+ .addGrid(lr.tol(), new double[]{1E-5, 1E-6})
+ .build();
+
+ trainValidationSplit.setEstimatorParamMaps(paramGrid);
+
+ // 80% of the data will be used for training and the remaining 20% for
validation.
+ trainValidationSplit.setTrainRatio(0.8);
+
+ // Run train validation split, and choose the best set of parameters.
+ TrainValidationSplitModel model = trainValidationSplit.fit(training);
+
+ // Prepare unlabeled test data.
+ List<LabeledPoint> localTest = Lists.newArrayList(
+ new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
+ new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
+ new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5)));
+
+ DataFrame test = jsql.createDataFrame(jsc.parallelize(localTest),
LabeledPoint.class);
+
+ // Make predictions on test data. model is the model with combination
of parameters
+ // that performed best.
+ DataFrame results = model.transform(test);
+ for (Row r: results.select("features", "label",
"prediction").collect()) {
+ System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> " +
"prediction=" + r.get(2));
--- End diff --
Use `DataFrame.show()`
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]