Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/8377#discussion_r38157914
--- Diff: docs/ml-guide.md ---
@@ -868,6 +868,132 @@ jsc.stop();
</div>
+## Example: Model Selection via Train Validation Split
+In addition to `CrossValidator` Spark also offers
+[`TrainValidationSplit`](api/scala/index.html#org.apache.spark.ml.tuning.TrainValidationSplit)
for hyper-parameter tuning.
+`TrainValidationSplit` only evaluates each combination of parameters once
as opposed to k times in
+ case of `CrossValidator`. It is therefore less expensive, but will not
produce as reliable results.
+
+`TrainValidationSplit` takes an `Estimator`, a set of `ParamMap`s provided
in the `estimatorParamMaps` parameter, and an
+[`Evaluator`](api/scala/index.html#org.apache.spark.ml.Evaluator).
+It begins by splitting the dataset into two parts using `trainRatio`
parameter
+which are used as separate training and test datasets. For example with
`$trainRatio=0.75$` (default),
+`TrainValidationSplit` will generate a training and test dataset pair
where 75% of the data is used for training and 25% for validation.
+Similar to `CrossValidator`, `TrainValidationSplit` also iterates through
the set of `ParamMap`s.
+For each combination of parameters, it trains the given `Estimator` and
evaluates it using the given `Evaluator`.
+The `ParamMap` which produces the best evaluation metric is selected as
the best option.
+`TrainValidationSplit` finally fits the `Estimator` using the best
`ParamMap` and the entire dataset.
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+import org.apache.spark.ml.evaluation.RegressionEvaluator
+import org.apache.spark.ml.regression.LinearRegression
+import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
+import org.apache.spark.mllib.util.MLUtils
+import org.apache.spark.sql.SQLContext
+import org.apache.spark.{SparkConf, SparkContext}
+
+import sqlContext.implicits._
+
+// Prepare training and test data.
+val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
+val Array(training, test) = data.randomSplit(Array(0.9, 0.1), seed = 12345)
+
+val lr = new LinearRegression()
+
+// In this case the estimator is simply the linear regression.
+// A TrainValidationSplit requires an Estimator, a set of Estimator
ParamMaps, and an Evaluator.
+val trainValidationSplit = new TrainValidationSplit()
+ .setEstimator(lr)
+ .setEvaluator(new RegressionEvaluator)
+
+// We use a ParamGridBuilder to construct a grid of parameters to search
over.
+// TrainValidationSplit will try all combinations of values and determine
best model using
+// the evaluator.
+val paramGrid = new ParamGridBuilder()
+ .addGrid(lr.regParam, Array(0.1, 0.01))
+ .addGrid(lr.fitIntercept, Array(true, false))
+ .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
+ .build()
+
+trainValidationSplit.setEstimatorParamMaps(paramGrid)
+
+// 80% of the data will be used for training and the remaining 20% for
validation.
+trainValidationSplit.setTrainRatio(0.8)
+
+// Run train validation split, and choose the best set of parameters.
+val model = trainValidationSplit.fit(training.toDF())
+
+// Make predictions on test data. model is the model with combination of
parameters
+// that performed best.
+model.transform(test.toDF())
+ .select("features", "label", "prediction")
+ .show()
+
+sc.stop()
+{% endhighlight %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% highlight java %}
+import org.apache.spark.SparkConf;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.ml.evaluation.RegressionEvaluator;
+import org.apache.spark.ml.param.ParamMap;
+import org.apache.spark.ml.regression.LinearRegression;
+import org.apache.spark.ml.tuning.*;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.rdd.RDD;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.SQLContext;
+
+RDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(),
"data/mllib/sample_libsvm_data.txt");
--- End diff --
Convert to DataFrame first then `randomSplit`.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]