Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/7987#discussion_r39792732
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/feature/Interaction.scala ---
@@ -0,0 +1,276 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.feature
+
+import scala.collection.mutable.{ArrayBuffer, ArrayBuilder}
+
+import org.apache.spark.SparkException
+import org.apache.spark.annotation.Experimental
+import org.apache.spark.ml.attribute._
+import org.apache.spark.ml.param._
+import org.apache.spark.ml.param.shared._
+import org.apache.spark.ml.util.Identifiable
+import org.apache.spark.ml.{Estimator, Model, Pipeline, PipelineModel,
PipelineStage, Transformer}
+import org.apache.spark.mllib.linalg.{Vector, VectorUDT, Vectors}
+import org.apache.spark.sql.{DataFrame, Row}
+import org.apache.spark.sql.functions._
+import org.apache.spark.sql.types._
+
+/**
+ * :: Experimental ::
+ * Implements the feature interaction transform. This transformer takes in
Double and Vector type
+ * columns and outputs a flattened vector of their feature interactions.
To handle interaction,
+ * we first one-hot encode any nominal features. Then, a vector of the
feature cross-products is
+ * produced.
+ *
+ * For example, given the input feature values `Double(2)` and `Vector(3,
4)`, the output would be
+ * `Vector(6, 8)` if all input features were numeric. If the first feature
was instead nominal
+ * with four categories, the output would then be `Vector(0, 0, 0, 0, 3,
4, 0, 0)`.
+ */
+@Experimental
+class Interaction(override val uid: String) extends Transformer
+ with HasInputCols with HasOutputCol {
+
+ def this() = this(Identifiable.randomUID("interaction"))
+
+ /** @group setParam */
+ def setInputCols(values: Array[String]): this.type = set(inputCols,
values)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ // optimistic schema; does not contain any ML attributes
+ override def transformSchema(schema: StructType): StructType = {
+ validateParams()
+ StructType(schema.fields :+ StructField($(outputCol), new VectorUDT,
false))
+ }
+
+ override def transform(dataset: DataFrame): DataFrame = {
+ validateParams()
+ val inputFeatures = $(inputCols).map(c => dataset.schema(c))
+ val featureEncoders = getFeatureEncoders(inputFeatures)
+ val featureAttrs = getFeatureAttrs(inputFeatures)
+
+ def interactFunc = udf { row: Row =>
+ var indices = ArrayBuilder.make[Int]
+ var values = ArrayBuilder.make[Double]
+ var size = 1
+ indices += 0
+ values += 1.0
+ var featureIndex = row.length - 1
+ while (featureIndex >= 0) {
+ val prevIndices = indices.result()
+ val prevValues = values.result()
+ val prevSize = size
+ val currentEncoder = featureEncoders(featureIndex)
+ indices = ArrayBuilder.make[Int]
+ values = ArrayBuilder.make[Double]
+ size *= currentEncoder.outputSize
+ currentEncoder.foreachNonzeroOutput(row(featureIndex), (i, a) => {
+ var j = 0
+ while (j < prevIndices.length) {
+ indices += prevIndices(j) + i * prevSize
+ values += prevValues(j) * a
+ j += 1
+ }
+ })
+ featureIndex -= 1
+ }
+ Vectors.sparse(size, indices.result(), values.result()).compressed
+ }
+
+ val featureCols = inputFeatures.map { f =>
+ f.dataType match {
+ case DoubleType => dataset(f.name)
+ case _: VectorUDT => dataset(f.name)
+ case _: NumericType | BooleanType =>
dataset(f.name).cast(DoubleType)
+ }
+ }
+ dataset.select(
+ col("*"),
+ interactFunc(struct(featureCols: _*)).as($(outputCol),
featureAttrs.toMetadata()))
+ }
+
+ /**
+ * Creates a feature encoder for each input column, which supports
efficient iteration over
+ * one-hot encoded feature values. See also the class-level comment of
[[FeatureEncoder]].
+ *
+ * @param features The input feature columns to create encoders for.
+ */
+ private def getFeatureEncoders(features: Seq[StructField]):
Array[FeatureEncoder] = {
+ def getNumFeatures(attr: Attribute): Int = {
+ attr match {
+ case nominal: NominalAttribute =>
+ math.max(1, nominal.getNumValues.getOrElse(
+ throw new SparkException("Nominal features must have attr
numValues defined.")))
+ case _ =>
+ 1 // numeric feature
+ }
+ }
+ features.map { f =>
+ val numFeatures = f.dataType match {
+ case _: NumericType | BooleanType =>
+ Array(getNumFeatures(Attribute.fromStructField(f)))
+ case _: VectorUDT =>
+ val attrs =
AttributeGroup.fromStructField(f).attributes.getOrElse(
+ throw new SparkException("Vector attributes must be defined
for interaction."))
+ attrs.map(getNumFeatures).toArray
+ }
+ new FeatureEncoder(numFeatures)
+ }.toArray
+ }
+
+ /**
+ * Generates ML attributes for the output vector of all feature
interactions. We make a best
+ * effort to generate reasonable names for output features, based on the
concatenation of the
+ * interacting feature names and values delimited with `_`. When no
feature name is specified,
+ * we fall back to using the feature index (e.g. `foo:bar_2_0` may
indicate an interaction
+ * between the numeric `foo` feature and a nominal third feature from
column `bar`.
+ *
+ * @param features The input feature columns to the Interaction
transformer.
+ */
+ private def getFeatureAttrs(features: Seq[StructField]): AttributeGroup
= {
+ var featureAttrs: Seq[Attribute] = Nil
+ features.reverse.foreach { f =>
+ val encodedAttrs = f.dataType match {
+ case _: NumericType | BooleanType =>
+ val attr = Attribute.fromStructField(f)
+ encodedFeatureAttrs(Seq(attr), None)
+ case _: VectorUDT =>
+ val group = AttributeGroup.fromStructField(f)
+ encodedFeatureAttrs(group.attributes.get, Some(group.name))
+ }
+ if (featureAttrs.isEmpty) {
+ featureAttrs = encodedAttrs
+ } else {
+ featureAttrs = encodedAttrs.flatMap { head =>
+ featureAttrs.map { tail =>
+ NumericAttribute.defaultAttr.withName(head.name.get + ":" +
tail.name.get)
+ }
+ }
+ }
+ }
+ new AttributeGroup($(outputCol), featureAttrs.toArray)
+ }
+
+ /**
+ * Generates the output ML attributes for a single input feature. Each
output feature name has
+ * up to three parts: the group name, feature name, and category name
(for nominal features),
+ * each separated by an underscore.
+ *
+ * @param inputAttrs The attributes of the input feature.
+ * @param groupName Optional name of the input feature group (for Vector
type features).
+ */
+ private def encodedFeatureAttrs(
+ inputAttrs: Seq[Attribute],
+ groupName: Option[String]): Seq[Attribute] = {
+
+ def format(
+ index: Int,
+ attrName: Option[String],
+ categoryName: Option[String]): String = {
+ val parts = Seq(groupName, Some(attrName.getOrElse(index.toString)),
categoryName)
+ parts.flatten.mkString("_")
+ }
+
+ inputAttrs.zipWithIndex.flatMap {
+ case (nominal: NominalAttribute, i) =>
+ if (nominal.values.isDefined) {
+ nominal.values.get.map(
+ v => BinaryAttribute.defaultAttr.withName(format(i,
nominal.name, Some(v))))
+ } else {
+ Array.tabulate(nominal.getNumValues.get)(
+ j => BinaryAttribute.defaultAttr.withName(format(i,
nominal.name, Some(j.toString))))
+ }
+ case (a: Attribute, i) =>
+ Seq(NumericAttribute.defaultAttr.withName(format(i, a.name, None)))
+ }
+ }
+
+ override def copy(extra: ParamMap): Interaction = defaultCopy(extra)
+
+ override def validateParams(): Unit = {
+ require(get(inputCols).isDefined, "Input cols must be defined first.")
+ require(get(outputCol).isDefined, "Output col must be defined first.")
+ require($(inputCols).length > 0, "Input cols must have non-zero
length.")
+ require($(inputCols).distinct.length == $(inputCols).length, "Input
cols must be distinct.")
+ }
+}
+
+/**
+ * This class performs on-the-fly one-hot encoding of features as you
iterate over them. To
+ * indicate which input features should be one-hot encoded, an array of
the feature counts
+ * must be passed in ahead of time.
+ *
+ * @param numFeatures Array of feature counts for each input feature. For
nominal features this
+ * count is equal to the number of categories. For
numeric features the count
+ * should be set to 1.
+ */
+private[ml] class FeatureEncoder(numFeatures: Array[Int]) {
+ assert(numFeatures.forall(_ > 0), "Features counts must all be
positive.")
+
+ /** The size of the output vector. */
+ val outputSize = numFeatures.sum
+
+ /** Precomputed offsets for the location of each output feature. */
+ private val outputOffsets = {
+ val arr = new Array[Int](numFeatures.length)
+ for (i <- 1 until arr.length) {
--- End diff --
minor: Use `while` instead of `for`. The latter is slow in Scala. Another
option is using `foldLeft` (not as fast as `while` but saves some code)
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]