Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/5779#discussion_r40962335
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/feature/QuantileDiscretizer.scala ---
@@ -0,0 +1,178 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.feature
+
+import org.apache.spark.Logging
+
+import scala.collection.mutable
+
+import org.apache.spark.annotation.Experimental
+import org.apache.spark.ml._
+import org.apache.spark.ml.attribute.NominalAttribute
+import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
+import org.apache.spark.ml.param.{IntParam, _}
+import org.apache.spark.ml.util._
+import org.apache.spark.sql.types.{DoubleType, StructType}
+import org.apache.spark.sql.{DataFrame, Row}
+import org.apache.spark.util.random.XORShiftRandom
+
+/**
+ * Params for [[QuantileDiscretizer]].
+ */
+private[feature] trait QuantileDiscretizerBase extends Params with
HasInputCol with HasOutputCol {
+
+ /**
+ * Maximum number of buckets (quantiles, or categories) into which data
points are grouped. Must
+ * be >= 2.
+ * default: 2
+ * @group param
+ */
+ val numBuckets = new IntParam(this, "numBuckets", "Maximum number of
buckets (quantiles, or " +
+ "categories) into which data points are grouped. Must be >= 2.",
+ ParamValidators.gtEq(2))
+ setDefault(numBuckets -> 2)
+
+ /** @group getParam */
+ def getNumBuckets: Int = getOrDefault(numBuckets)
+}
+
+/**
+ * :: Experimental ::
+ * `QuantileDiscretizer` takes a column with continuous features and
outputs a column with binned
+ * categorical features. The bin ranges are chosen by taking a sample of
the data and dividing it
+ * into roughly equal parts. The lower and upper bin bounds will be
-Infinity and +Infinity,
+ * covering all real values. This attempts to find numBuckets partitions
based on a sample of data,
+ * but it may find fewer depending on the data sample values.
+ */
+@Experimental
+final class QuantileDiscretizer(override val uid: String)
+ extends Estimator[Bucketizer] with QuantileDiscretizerBase {
+
+ def this() = this(Identifiable.randomUID("quantileDiscretizer"))
+
+ /** @group setParam */
+ def setNumBuckets(value: Int): this.type = set(numBuckets, value)
+
+ /** @group setParam */
+ def setInputCol(value: String): this.type = set(inputCol, value)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ override def transformSchema(schema: StructType): StructType = {
+ SchemaUtils.checkColumnType(schema, $(inputCol), DoubleType)
+ val inputFields = schema.fields
+ require(inputFields.forall(_.name != $(outputCol)),
+ s"Output column ${$(outputCol)} already exists.")
+ val attr = NominalAttribute.defaultAttr.withName($(outputCol))
+ val outputFields = inputFields :+ attr.toStructField()
+ StructType(outputFields)
+ }
+
+ override def fit(dataset: DataFrame): Bucketizer = {
+ val samples =
QuantileDiscretizer.getSampledInput(dataset.select($(inputCol)), $(numBuckets))
+ .map { case Row(feature: Double) => feature }
+ val candidates = QuantileDiscretizer.findSplitCandidates(samples,
$(numBuckets) - 1)
+ val splits = QuantileDiscretizer.getSplits(candidates)
+ val bucketizer = new Bucketizer(uid).setSplits(splits)
+ copyValues(bucketizer)
+ }
+
+ override def copy(extra: ParamMap): QuantileDiscretizer =
defaultCopy(extra)
+}
+
+private[feature] object QuantileDiscretizer extends Logging {
+ /**
+ * Sampling from the given dataset to collect quantile statistics.
+ */
+ def getSampledInput(dataset: DataFrame, numBins: Int): Array[Row] = {
+ val totalSamples = dataset.count()
+ require(totalSamples > 0,
+ "QuantileDiscretizer requires non-empty input dataset but was given
an empty input.")
+ val requiredSamples = math.max(numBins * numBins, 10000)
+ val fraction = math.min(requiredSamples / dataset.count(), 1.0)
+ dataset.sample(withReplacement = false, fraction, new
XORShiftRandom().nextInt()).collect()
+ }
+
+ /**
+ * Compute split points with respect to the sample distribution.
+ */
+ def findSplitCandidates(samples: Array[Double], numSplits: Int):
Array[Double] = {
+ val valueCountMap = samples.foldLeft(Map.empty[Double, Int]) { (m, x)
=>
+ m + ((x, m.getOrElse(x, 0) + 1))
+ }
+ val valueCounts = valueCountMap.toSeq.sortBy(_._1).toArray ++
Array((Double.MaxValue, 1))
+ val possibleSplits = valueCounts.length - 1
+ if (possibleSplits <= numSplits) {
+ valueCounts.dropRight(1).map(_._1)
+ } else {
+ val stride: Double = math.ceil(samples.length.toDouble / (numSplits
+ 1))
+ val splitsBuilder = mutable.ArrayBuilder.make[Double]
+ var index = 1
+ // currentCount: sum of counts of values that have been visited
+ var currentCount = valueCounts(0)._2
+ // targetCount: target value for `currentCount`. If `currentCount`
is closest value to
+ // `targetCount`, then current value is a split threshold. After
finding a split threshold,
+ // `targetCount` is added by stride.
+ var targetCount = stride
+ while (index < valueCounts.length) {
+ val previousCount = currentCount
+ currentCount += valueCounts(index)._2
+ val previousGap = math.abs(previousCount - targetCount)
+ val currentGap = math.abs(currentCount - targetCount)
+ // If adding count of current value to currentCount makes the gap
between currentCount and
+ // targetCount smaller, previous value is a split threshold.
+ if (previousGap < currentGap) {
+ splitsBuilder += valueCounts(index - 1)._1
+ targetCount += stride
+ }
+ index += 1
+ }
+ splitsBuilder.result()
+ }
+ }
+
+ /**
+ * Regulate split candidates to effective splits, such as adding
positive/negative infinity in
+ * both sides, or using default split value in case of only
ineffectiveness split candidates are
--- End diff --
Rephrase:
"Adjust split candidates to proper splits by: adding positive/negative
infinity to both sides as needed, and adding a default split value of 0 if no
good candidates are found."
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]