Github user yu-iskw commented on a diff in the pull request:

    https://github.com/apache/spark/pull/8563#discussion_r43610407
  
    --- Diff: 
mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
 ---
    @@ -402,4 +441,474 @@ class BlockMatrix @Since("1.3.0") (
             s"A.colsPerBlock: $colsPerBlock, B.rowsPerBlock: 
${other.rowsPerBlock}")
         }
       }
    +
    +  /**
    +   * Schur Complement of a BlockMatrix.  For a matrix that is in 4 
partitions:
    +   *  A=[a11, a12; a21; a22], the Schur Complement S is S = a22 - (a21 * 
a11^-1 * a12).
    +   * The Schur Complement is always (n-1) x (n-1), which is the size of 
a22. a11 is expected
    +   * to fit into memory so that Breeze inversions can be computed.
    +   *
    +   * @return BlockMatrix Schur Complement as BlockMatrix
    +   * @since 1.6.0
    +   */
    +  private[mllib] def SchurComplement: BlockMatrix = {
    +    require(this.numRowBlocks == this.numColBlocks, "Block Matrix must be 
square.")
    +    require(this.numRowBlocks > 1, "Block Matrix must be larger than one 
block.")
    +    val topRange = (0, 0); val botRange = (1, this.numColBlocks - 1)
    +    val a11 = this.subBlock(topRange, topRange)
    +    val a12 = this.subBlock(topRange, botRange)
    +    val a21 = this.subBlock(botRange, topRange)
    +    val a22 = this.subBlock(botRange, botRange)
    +
    +    val a11Brz = inv(a11.toBreeze) // note that intermediate a11 calcs 
derive from inv(a11)
    +    val a11Mtx = Matrices.dense(a11.numRows.toInt, a11.numCols.toInt, 
a11Brz.toArray)
    +    val a11RDD = this.blocks.sparkContext.parallelize(Seq(((0, 0), 
a11Mtx)))
    +    val a11Inv = new BlockMatrix(a11RDD, this.rowsPerBlock, 
this.colsPerBlock)
    +
    +    val S = a22.subtract(a21.multiply(a11Inv.multiply(a12)))
    +    S
    +  }
    +
    +  /**
    +   * Returns a rectangular (sub)BlockMatrix with block ranges as 
specified.  Block Ranges
    +   * refer to a range of blocks that each contain a matrix.  The returned 
BlockMatrix
    +   * is numbered so that the upper left block is indexed as (0,0).
    +   *
    +   *
    +   * @param blockRowRange The lower and upper row range of blocks, as 
(Int,Int)
    +   * @param blockColRange The lower and upper col range of blocks, as 
(Int, Int)
    +   * @return a BlockMatrix with (0,0) as the upper leftmost block index
    +   * @since 1.6.0
    +   */
    +  private [mllib] def subBlock(blockRowRange: (Int, Int), blockColRange: 
(Int, Int)):
    +          BlockMatrix = {
    +    //  Extracts BlockMatrix elements from a specified range of block 
indices
    +    //  Creating a Sub BlockMatrix of rectangular shape.
    +    //  Also reindexes so that the upper left block is always (0, 0)
    +
    +    // TODO: add a require statement ...rowMax<=size..
    +    val rowMin = blockRowRange._1;    val rowMax = blockRowRange._2
    +    val colMin = blockColRange._1 ;   val colMax = blockColRange._2
    +    val extractedSeq = this.blocks.filter{ case((x, y), matrix) =>
    +      x >= rowMin && x<= rowMax &&         // finding blocks
    +        y >= colMin && y<= colMax }.map {   // shifting indices
    +      case(((x, y), matrix) ) => ((x-rowMin, y-colMin), matrix)
    +    }
    +    new BlockMatrix(extractedSeq, rowsPerBlock, colsPerBlock)
    +  }
    +
    +  /**
    +   * Computes the LU decomposition of a Single Block from BlockMatrix 
using the
    +   * Breeze LU method.  The method (as written) operates -only- on the 
upper
    +   * left (0,0) corner of the BlockMatrix.
    +   *
    +   * @return List[BDM[Double]] of Breeze Matrices (BDM) (P,L,U) for 
blockLU method.
    +   * @since 1.6.0
    +   */
    +  private [mllib] def singleBlockPLU: List[BDM[Double]] = {
    +    // returns PA = LU factorization from Breeze
    +    val PLU = LU(this.subBlock((0, 0), (0, 0)).toBreeze)
    +    val k = PLU._1.cols
    +    val L = lowerTriangular(PLU._1) - diag(diag(PLU._1)) + 
diag(DenseVector.fill(k){1.0})
    +    val U = upperTriangular(PLU._1);
    +    var P = diag(DenseVector.fill(k){1.0})
    +    var Pi = diag(DenseVector.fill(k){1.0})
    +    // size of square matrix
    +    // populating permutation matrix
    +    var i = 0
    +    while (i < k) {
    +      val I = {
    +        if (i == 0){k - 1}
    +        else {i - 1}
    +      }
    +      val J = PLU._2(i) -1
    +      if (i != J) {
    +        Pi(i, J) += 1.0
    +        Pi(J, i) += 1.0
    +        Pi(i, i) -= 1.0
    +        Pi(J, J) -= 1.0
    +      }
    +      P = Pi * P  // constructor Pi*P for PA=LU
    +      // resetting Pi for next iteration
    +      if (i != J) {
    +        Pi(i, J) -= 1.0
    +        Pi(J, i) -= 1.0
    +        Pi(i, i) += 1.0
    +        Pi(J, J) += 1.0
    +      }
    +      i += 1
    +    }
    +    List(P, L, U)
    +  }
    +
    +
    +  /**
    +   * This method reassigns 'absolute' index locations (i,j), to sequences. 
 This is
    +   * designed to reconsitute the orignal block locations that were lost in 
the
    +   * subBlock method.
    +   *
    +   * @param rowMin The new lowest row value
    +   * @param colMin The new lowest column value
    +   * @return an RDD of Sequences with new block indexing
    +   * @since 1.6.0
    +   *
    +   */
    +  private [mllib] def shiftIndices(rowMin: Int, colMin: Int): RDD[((Int, 
Int), Matrix)] = {
    +    // This routine recovers the absolute indexing of the block matrices 
for reassembly
    +    val extractedSeq = this.blocks.map {   // shifting indices
    +      case(((x, y), matrix)) => ((x + rowMin, y + colMin), matrix)
    +    }
    +    extractedSeq
    +  }
    +
    +  /**
    +   * A class that contains the 3 main BlockMatrix items to be returned
    +   * when calling blockLU.
    +   *
    +   * @param p The Permutation BlockMatrix
    +   * @param l Lower Diagonal BlockMatrix
    +   * @param u Upper Diagonal BlockMatrix
    +   *
    +   */
    +
    +  private [mllib] class PLU(p: BlockMatrix, l: BlockMatrix, u: BlockMatrix 
){
    +    val P = p
    +    val L = l
    +    val U = u
    +  }
    +
    +  /**
    +   * Extends the base class PLU with additional matrices that are used
    +   * int he solve method.
    +   *
    +   * @param p The Permutation BlockMatrix
    +   * @param l Lower Diagonal BlockMatrix
    +   * @param u Upper Diagonal BlockMatrix
    +   *
    +   * @param lInv The inverse of the lower diagaonal matrices (in (i,i)th
    +   *             cells only).
    +   * @param uInv The inverse of the upper diagaonal matrices (in (i,i)th
    +   *             cells only).
    +   */
    +  private [mllib] class PLUandInverses(p: BlockMatrix, l: BlockMatrix, u: 
BlockMatrix,
    +
    +                       lInv: BlockMatrix, uInv: BlockMatrix) extends 
PLU(p, l, u) {
    +    val dLi = lInv
    +    val dUi = uInv
    +  }
    +
    +  /**
    +   * Computes the LU Decomposition of a Square Matrix.  For a matrix A of 
size (n x n)
    +   * LU decomposition computes the Lower Triangular Matrix L, the Upper 
Triangular
    +   * Matrix U, along with a Permutation Matrix P, such that PA=LU.  The 
Permutation
    +   * Matrix addresses cases where zero entries prevent forward substitution
    +   * solution of L or U.
    +   *
    +   * The BlockMatrix version takes a BlockMatrix as an input and returns a 
Tuple
    +   * of 5 BlockMatrix objects:
    +   * P, L, U (in that order), such that P.multiply(A)-L.multiply(U) = 0
    +   * and Li, Ui, which are the inverse of the block diagonal terms for L 
and U.
    +   *
    +   * The blockLU method will return only P,L, and U, but blockLUtoSolver 
will return
    +   * the extra Li and Ui matrices, which will be used by the solve method
    +   * so that it does not need to recompute these values.
    +   *
    +   * The method follows a procedure similar to the method used in 
ScaLAPACK, but
    +   * places more emphasis on preparing BlockMatrix objects as inputs to 
large
    +   * BlockMatrix.multiply operations.
    +   *
    +   *
    +   * @return  PLUandInverses(P,L,U,Li,Ui) as a Tuple of BlockMatrix
    +   * @since 1.6.0
    +   */
    +  private [mllib] def blockLUtoSolver: PLUandInverses = {
    +
    +    // builds up the array as a union of RDD sets
    +    val nDiagBlocks = this.numColBlocks
    +    // Matrix changes shape during recursion...the "absolute location" 
must be
    +    // preserved when reconstructing.
    +    val rowsAbs = this.numRowBlocks; val colsAbs = rowsAbs
    +    // accessing the spark context
    +    val sc = this.blocks.sparkContext
    +
    +    /**
    +     * LUSequences is a class that is defined to make the 
recursiveSequencesBuild section
    +     * more readable.
    +     *
    +     * These are passed as an RDD of blocks:
    +     * @param p the permutation matrix.
    +     * @param l the lower diagonal matrix.
    +     * @param u the upper diagonal matrix.
    +     * @param lInv the inverse lower diagonal matrix (only populating 
(i,i) cells).
    +     * @param uInv the inverse upper diagonal matrix (only populating 
(i,i) cells).
    +     * @param lDiag the lower diagonal matrices (only populating (i,i) 
cells).
    +     * @param uDiag the upper diagonal matrices (only populating (i,i) 
cells).
    +     * This is passed as a BlockMatrix
    +     * @param a the Schur Complement from the previous iteration, treated 
as the source matrix
    +     *          for the next iteraton.
    +     *
    +     *
    +     * @Since("1.6.0")
    +     */
    +    class LUSequences(p: RDD[((Int, Int), Matrix)], l: RDD[((Int, Int), 
Matrix)],
    +                      u: RDD[((Int, Int), Matrix)],
    --- End diff --
    
    fix the indentation


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to