Github user liancheng commented on the pull request:
https://github.com/apache/spark/pull/9060#issuecomment-156077334
You may construct a Parquet file consists of a single column with
dictionary encoding using:
```scala
val path = "file:///tmp/parquet/dict"
sqlContext.range(1 << 16).selectExpr("(id % 4) AS
i").coalesce(1).write.mode("overwrite").parquet(path)
```
And here are instructions of building and installing the parquet-tools CLI
tool. Then you can inspect Parquet metadata using:
```
$ parquet-meta /tmp/parquet/dict
file:
file:/private/tmp/parquet/dict/part-r-00000-88498608-9eed-4728-b96a-b60bc5ebc2a8.gz.parquet
creator: parquet-mr version 1.6.0
extra: org.apache.spark.sql.parquet.row.metadata =
{"type":"struct","fields":[{"name":"i","type":"long","nullable":true,"metadata":{}}]}
file schema: root
----------------------------------------------------------------------------------------------------------------------------------------------
i: OPTIONAL INT64 R:0 D:1
row group 1: RC:65536 TS:16615 OFFSET:4
----------------------------------------------------------------------------------------------------------------------------------------------
i: INT64 GZIP DO:0 FPO:4 SZ:198/16615/83.91 VC:65536
ENC:BIT_PACKED,RLE,PLAIN_DICTIONARY
```
The `ENC:...` part in the last line is column encoding information.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]