Github user mengxr commented on a diff in the pull request: https://github.com/apache/spark/pull/1155#discussion_r14676283 --- Diff: mllib/src/main/scala/org/apache/spark/mllib/evaluation/MulticlassMetrics.scala --- @@ -0,0 +1,127 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.evaluation + +import org.apache.spark.annotation.Experimental +import org.apache.spark.rdd.RDD +import org.apache.spark.Logging +import org.apache.spark.SparkContext._ + +import scala.collection.Map + +/** + * ::Experimental:: + * Evaluator for multiclass classification. + * + * @param predictionsAndLabels an RDD of (prediction, label) pairs. + */ +@Experimental +class MulticlassMetrics(predictionsAndLabels: RDD[(Double, Double)]) extends Logging { + + private lazy val labelCountByClass: Map[Double, Long] = predictionsAndLabels.values.countByValue() + private lazy val labelCount: Long = labelCountByClass.values.sum + private lazy val tpByClass: Map[Double, Int] = predictionsAndLabels + .map { case (prediction, label) => + (label, if (label == prediction) 1 else 0) + }.reduceByKey(_ + _) + .collectAsMap() + private lazy val fpByClass: Map[Double, Int] = predictionsAndLabels + .map { case (prediction, label) => + (prediction, if (prediction != label) 1 else 0) + }.reduceByKey(_ + _) + .collectAsMap() + + /** + * Returns precision for a given label (category) + * @param label the label. + */ + def precision(label: Double): Double = { + val tp = tpByClass(label) + val fp = fpByClass.getOrElse(label, 0) + if (tp + fp == 0) 0 else tp.toDouble / (tp + fp) + } + + /** + * Returns recall for a given label (category) + * @param label the label. + */ + def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label) + + /** + * Returns f-measure for a given label (category) + * @param label the label. + */ + def fMeasure(label: Double, beta: Double): Double = { + val p = precision(label) + val r = recall(label) + val betaSqrd = beta * beta + if (p + r == 0) 0 else (1 + betaSqrd) * p * r / (betaSqrd * p + r) + } + + /** + * Returns f1-measure for a given label (category) + * @param label the label. + */ + def fMeasure(label: Double): Double = fMeasure(label, 1.0) + + /** + * Returns precision + */ + lazy val precision: Double = tpByClass.values.sum.toDouble / labelCount + + /** + * Returns recall + * (equals to precision for multiclass classifier + * because sum of all false positives is equal to sum + * of all false negatives) + */ + lazy val recall: Double = precision + + /** + * Returns f-measure + * (equals to precision and recall because precision equals recall) + */ + lazy val fMeasure: Double = precision + + /** + * Returns weighted averaged recall + * (equals to precision, recall and f-measure) + */ + lazy val weightedRecall: Double = labelCountByClass.map { case (category, count) => + recall(category) * count.toDouble / labelCount + }.sum + + /** + * Returns weighted averaged precision + */ + lazy val weightedPrecision: Double = labelCountByClass.map { case (category, count) => + precision(category) * count.toDouble / labelCount + }.sum + + /** + * Returns weighted averaged f1-measure + */ + lazy val weightedF1Measure: Double = labelCountByClass.map { case (category, count) => --- End diff -- Could you make this one take an optional beta parameter as well? Maybe change the name to `weightedFMeasure` and implement both `weightedFMeasure()` and `weightedFMeasure(beta)`?
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---