Github user yinxusen commented on a diff in the pull request:
https://github.com/apache/spark/pull/10002#discussion_r46080247
--- Diff: docs/ml-features.md ---
@@ -1508,25 +737,7 @@ This example below demonstrates how to transform
vectors using a transforming ve
Refer to the [ElementwiseProduct Scala
docs](api/scala/index.html#org.apache.spark.ml.feature.ElementwiseProduct)
for more details on the API.
-{% highlight scala %}
-import org.apache.spark.ml.feature.ElementwiseProduct
-import org.apache.spark.mllib.linalg.Vectors
-
-// Create some vector data; also works for sparse vectors
-val dataFrame = sqlContext.createDataFrame(Seq(
- ("a", Vectors.dense(1.0, 2.0, 3.0)),
- ("b", Vectors.dense(4.0, 5.0, 6.0)))).toDF("id", "vector")
-
-val transformingVector = Vectors.dense(0.0, 1.0, 2.0)
-val transformer = new ElementwiseProduct()
- .setScalingVec(transformingVector)
- .setInputCol("vector")
- .setOutputCol("transformedVector")
-
-// Batch transform the vectors to create new column:
-transformer.transform(dataFrame).show()
-
-{% endhighlight %}
+{% include_example
scala/org/apache/spark/examples/ml/ElementWiseProductExample.scala %}
--- End diff --
Change the file name into `ElementwiseProductExample.scala`
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]