Github user yinxusen commented on a diff in the pull request:
https://github.com/apache/spark/pull/11142#discussion_r53559180
--- Diff:
examples/src/main/java/org/apache/spark/examples/mllib/JavaChiSqSelectorExample.java
---
@@ -0,0 +1,74 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.mllib;
+
+import org.apache.spark.SparkConf;
+// $example on$
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.feature.ChiSqSelector;
+import org.apache.spark.mllib.feature.ChiSqSelectorModel;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+// $example off$
+
+public class JavaChiSqSelectorExample {
+ public static void main(String[] args) {
+
+ SparkConf conf = new
SparkConf().setAppName("JavaChiSqSelectorExample");
+ JavaSparkContext jsc = new JavaSparkContext(conf);
+
+ // $example on$
+ JavaRDD<LabeledPoint> points = MLUtils.loadLibSVMFile(jsc.sc(),
+ "data/mllib/sample_libsvm_data.txt").toJavaRDD().cache();
+
+ // Discretize data in 16 equal bins since ChiSqSelector requires
categorical features
+ // Although features are doubles, the ChiSqSelector treats each unique
value as a category
+ JavaRDD<LabeledPoint> discretizedData = points.map(
+ new Function<LabeledPoint, LabeledPoint>() {
+ @Override
+ public LabeledPoint call(LabeledPoint lp) {
+ final double[] discretizedFeatures = new
double[lp.features().size()];
+ for (int i = 0; i < lp.features().size(); ++i) {
+ discretizedFeatures[i] = Math.floor(lp.features().apply(i) /
16);
+ }
+ return new LabeledPoint(lp.label(),
Vectors.dense(discretizedFeatures));
+ }
+ }
+ );
+
+ // Create ChiSqSelector that will select top 50 of 692 features
+ ChiSqSelector selector = new ChiSqSelector(50);
+ // Create ChiSqSelector model (selecting features)
+ final ChiSqSelectorModel transformer =
selector.fit(discretizedData.rdd());
+ // Filter the top 50 features from each feature vector
+ JavaRDD<LabeledPoint> filteredData = discretizedData.map(
+ new Function<LabeledPoint, LabeledPoint>() {
+ @Override
+ public LabeledPoint call(LabeledPoint lp) {
+ return new LabeledPoint(lp.label(),
transformer.transform(lp.features()));
+ }
+ }
+ );
+ // $example off$
+
--- End diff --
It's better to add an output of `filteredData` to make it a complete
example code. Refer to
https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/mllib/JavaLDAExample.java#L68
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]