Github user SparkQA commented on the pull request:

    https://github.com/apache/spark/pull/11791#issuecomment-200534807
  
    **[Test build #53957 has 
finished](https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/53957/consoleFull)**
 for PR 11791 at commit 
[`768a8d9`](https://github.com/apache/spark/commit/768a8d95ef394553ced64c1fad683127e54e699b).
     * This patch passes all tests.
     * This patch merges cleanly.
     * This patch adds the following public classes _(experimental)_:
      * `class LogisticRegressionModel(JavaModel, JavaMLWritable, 
JavaMLReadable):`
      * `class NaiveBayesModel(JavaModel, JavaMLWritable, JavaMLReadable):`
      * `class KMeansModel(JavaModel, JavaMLWritable, JavaMLReadable):`
      * `class Binarizer(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class CountVectorizer(JavaEstimator, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class CountVectorizerModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class DCT(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, 
JavaMLWritable):`
      * `class ElementwiseProduct(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable,`
      * `class HashingTF(JavaTransformer, HasInputCol, HasOutputCol, 
HasNumFeatures, JavaMLReadable,`
      * `class IDF(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, 
JavaMLWritable):`
      * `class IDFModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class MaxAbsScaler(JavaEstimator, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class MaxAbsScalerModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class MinMaxScaler(JavaEstimator, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class MinMaxScalerModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class NGram(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class Normalizer(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class OneHotEncoder(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class PolynomialExpansion(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable,`
      * `class QuantileDiscretizer(JavaEstimator, HasInputCol, HasOutputCol, 
HasSeed, JavaMLReadable,`
      * `class RegexTokenizer(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class SQLTransformer(JavaTransformer, JavaMLReadable, JavaMLWritable):`
      * `class StandardScaler(JavaEstimator, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class StandardScalerModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class StringIndexer(JavaEstimator, HasInputCol, HasOutputCol, 
HasHandleInvalid, JavaMLReadable,`
      * `class StringIndexerModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class IndexToString(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class StopWordsRemover(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class Tokenizer(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class VectorAssembler(JavaTransformer, HasInputCols, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class VectorIndexer(JavaEstimator, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class VectorIndexerModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class VectorSlicer(JavaTransformer, HasInputCol, HasOutputCol, 
JavaMLReadable, JavaMLWritable):`
      * `class Word2VecModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class PCA(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, 
JavaMLWritable):`
      * `class PCAModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class RFormula(JavaEstimator, HasFeaturesCol, HasLabelCol, 
JavaMLReadable, JavaMLWritable):`
      * `class RFormulaModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class ChiSqSelector(JavaEstimator, HasFeaturesCol, HasOutputCol, 
HasLabelCol, JavaMLReadable,`
      * `class ChiSqSelectorModel(JavaModel, JavaMLReadable, JavaMLWritable):`
      * `class PipelineMLWriter(JavaMLWriter):`
      * `class Pipeline(Estimator, MLReadable, MLWritable):`
      * `class PipelineModelMLWriter(JavaMLWriter):`
      * `class PipelineModel(Model, MLReadable, MLWritable):`
      * `class ALSModel(JavaModel, JavaMLWritable, JavaMLReadable):`
      * `class LinearRegressionModel(JavaModel, JavaMLWritable, 
JavaMLReadable):`
      * `class IsotonicRegressionModel(JavaModel, JavaMLWritable, 
JavaMLReadable):`
      * `class AFTSurvivalRegressionModel(JavaModel, JavaMLWritable, 
JavaMLReadable):`
      * `class MLWriter(object):`
      * `class JavaMLWriter(MLWriter):`
      * `class JavaMLWritable(MLWritable):`
      * `class MLReader(object):`
      * `class JavaMLReader(MLReader):`
      * `class JavaMLReadable(MLReadable):`
      * `  implicit class StringToColumn(val sc: StringContext) `
      * `class RecordReaderIterator[T](rowReader: RecordReader[_, T]) extends 
Iterator[T] `
      * `        // the type in next() and we get a class cast exception.  If 
we make that function return`
      * `class HDFSMetadataLog[T: ClassTag](sqlContext: SQLContext, path: 
String)`
      * `class StreamProgress(`


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to