Github user mengxr commented on a diff in the pull request:

    https://github.com/apache/spark/pull/1713#discussion_r15684640
  
    --- Diff: python/pyspark/mllib/stat.py ---
    @@ -0,0 +1,103 @@
    +#
    +# Licensed to the Apache Software Foundation (ASF) under one or more
    +# contributor license agreements.  See the NOTICE file distributed with
    +# this work for additional information regarding copyright ownership.
    +# The ASF licenses this file to You under the Apache License, Version 2.0
    +# (the "License"); you may not use this file except in compliance with
    +# the License.  You may obtain a copy of the License at
    +#
    +#    http://www.apache.org/licenses/LICENSE-2.0
    +#
    +# Unless required by applicable law or agreed to in writing, software
    +# distributed under the License is distributed on an "AS IS" BASIS,
    +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    +# See the License for the specific language governing permissions and
    +# limitations under the License.
    +#
    +
    +"""
    +Python package for statistical functions in MLlib.
    +"""
    +
    +from pyspark.mllib._common import \
    +    _get_unmangled_double_vector_rdd, _get_unmangled_rdd, \
    +    _serialize_double, _serialize_double_vector, \
    +    _deserialize_double, _deserialize_double_matrix
    +
    +class Statistics(object):
    +
    +    @staticmethod
    +    def corr(x, y=None, method=None):
    +        """
    +        Compute the correlation (matrix) for the input RDD(s) using the
    +        specified method.
    +        Methods currently supported: I{pearson (default), spearman}.
    +
    +        If a single RDD of Vectors is passed in, a correlation matrix
    +        comparing the columns in the input RDD is returned. Note that the
    +        method name can be passed in as the second argument without 
C{method=}.
    +        If two RDDs of floats are passed in, a single float is returned.
    +
    +        >>> x = sc.parallelize([1.0, 0.0, -2.0], 2)
    +        >>> y = sc.parallelize([4.0, 5.0, 3.0], 2)
    +        >>> zeros = sc.parallelize([0.0, 0.0, 0.0], 2)
    +        >>> abs(Statistics.corr(x, y) - 0.6546537) < 1e-7
    +        True
    +        >>> Statistics.corr(x, y) == Statistics.corr(x, y, "pearson")
    +        True
    +        >>> Statistics.corr(x, y, "spearman")
    +        0.5
    +        >>> from math import isnan
    +        >>> isnan(Statistics.corr(x, zeros))
    +        True
    +        >>> from linalg import Vectors
    +        >>> rdd = sc.parallelize([Vectors.dense([1, 0, 0, -2]), 
Vectors.dense([4, 5, 0, 3]),
    +        ...                       Vectors.dense([6, 7, 0,  8]), 
Vectors.dense([9, 0, 0, 1])])
    +        >>> Statistics.corr(rdd)
    +        array([[ 1.        ,  0.05564149,         nan,  0.40047142],
    +               [ 0.05564149,  1.        ,         nan,  0.91359586],
    +               [        nan,         nan,  1.        ,         nan],
    +               [ 0.40047142,  0.91359586,         nan,  1.        ]])
    +        >>> Statistics.corr(rdd, "spearman")
    +        array([[ 1.        ,  0.10540926,         nan,  0.4       ],
    +               [ 0.10540926,  1.        ,         nan,  0.9486833 ],
    +               [        nan,         nan,  1.        ,         nan],
    +               [ 0.4       ,  0.9486833 ,         nan,  1.        ]])
    +        """
    +        sc = x.ctx
    +        # Check inputs to determine whether a single value or a matrix is 
needed for output.
    +        # Since it's legal for users to use the method name as the second 
argument, we need to
    +        # check if y is used to specify the method name instead.
    +        if type(y) == str:
    +            if not method:
    +                method = y
    +            else:
    +                raise TypeError("Multiple string arguments detected when 
only at most one " \
    +                                + "allowed for Statistics.corr")
    +        if not y or type(y) == str:
    +            try:
    +                Xser = _get_unmangled_double_vector_rdd(x)
    +            except TypeError:
    +                raise TypeError("corr called on a single RDD not consisted 
of Vectors.")
    +            resultMat = sc._jvm.PythonMLLibAPI().corr(Xser._jrdd, method)
    +            return _deserialize_double_matrix(resultMat)
    +        else:
    +            xSer = _get_unmangled_rdd(x, _serialize_double)
    +            ySer = _get_unmangled_rdd(y, _serialize_double)
    +            result = sc._jvm.PythonMLLibAPI().corr(xSer._jrdd, ySer._jrdd, 
method)
    +            return result
    +
    +
    +def _test():
    +    import doctest
    +    from pyspark import SparkContext
    +    globs = globals().copy()
    +    globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
    +    (failure_count, test_count) = doctest.testmod(globs=globs, 
optionflags=doctest.ELLIPSIS)
    +    globs['sc'].stop()
    +    if failure_count:
    +        exit(-1)
    +
    +
    +if __name__ == "__main__":
    +    _test()
    --- End diff --
    
    new line at the end


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to