Github user cloud-fan commented on a diff in the pull request:
https://github.com/apache/spark/pull/12640#discussion_r61397517
--- Diff:
mllib/src/test/scala/org/apache/spark/mllib/linalg/UDTSerializationBenchmark.scala
---
@@ -0,0 +1,70 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.linalg
+
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
+import org.apache.spark.util.Benchmark
+
+/**
+ * Serialization benchmark for VectorUDT.
+ */
+object UDTSerializationBenchmark {
+
+ def main(args: Array[String]): Unit = {
+ val iters = 1e2.toInt
+ val numRows = 1e3.toInt
+
+ val encoder = ExpressionEncoder[Vector].defaultBinding
+
+ val vectors = (1 to numRows).map { i =>
+ Vectors.dense(Array.fill(1e5.toInt)(1.0 * i))
+ }.toArray
+ val rows = vectors.map(encoder.toRow)
+
+ val benchmark = new Benchmark("VectorUDT de/serialization", numRows,
iters)
+
+ benchmark.addCase("serialize") { _ =>
+ var sum = 0
+ var i = 0
+ while (i < numRows) {
+ sum += encoder.toRow(vectors(i)).numFields
+ i += 1
+ }
+ }
+
+ benchmark.addCase("deserialize") { _ =>
+ var sum = 0
+ var i = 0
+ while (i < numRows) {
+ sum += encoder.fromRow(rows(i)).numActives
+ i += 1
+ }
+ }
+
+ /*
+ Java HotSpot(TM) 64-Bit Server VM 1.8.0_60-b27 on Mac OS X 10.11.4
+ Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz
+
+ VectorUDT de/serialization: Best/Avg Time(ms) Rate(M/s)
Per Row(ns) Relative
+
-------------------------------------------------------------------------------------------
+ serialize 380 / 392 0.0
379730.0 1.0X
+ deserialize 138 / 142 0.0
137816.6 2.8X
+ */
+ benchmark.run()
--- End diff --
result on master:
```
VectorUDT de/serialization: Best/Avg Time(ms) Rate(M/s) Per
Row(ns) Relative
-------------------------------------------------------------------------------------------
serialize 1414 / 1462 0.0
1414104.1 1.0X
deserialize 169 / 178 0.0
169323.7 8.4X
```
The deserialize is much faster now, but the deserialize isn't ,
investigating
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]